Singular hyperbolic systems
HTML articles powered by AMS MathViewer
- by C. A. Morales, M. J. Pacifico and E. R. Pujals
- Proc. Amer. Math. Soc. 127 (1999), 3393-3401
- DOI: https://doi.org/10.1090/S0002-9939-99-04936-9
- Published electronically: May 4, 1999
- PDF | Request permission
Abstract:
We construct a class of vector fields on 3-manifolds containing the hyperbolic ones and the geometric Lorenz attractor. Conversely, we shall prove that nonhyperbolic systems in this class resemble the Lorenz attractor: they have Lorenz-like singularities accumulated by periodic orbits and they cannot be approximated by flows with nonhyperbolic critical elements.References
- Rodrigo Bamón, Rafael Labarca, Ricardo Mañé, and María José Pacífico, The explosion of singular cycles, Inst. Hautes Études Sci. Publ. Math. 78 (1993), 207–232 (1994). MR 1259432, DOI 10.1007/BF02712919
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133, DOI 10.1090/cbms/038
- Jacob Palis Jr. and Welington de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982. An introduction; Translated from the Portuguese by A. K. Manning. MR 669541, DOI 10.1007/978-1-4612-5703-5
- C. I. Doering, Persistently transitive vector fields on three-dimensional manifolds, Dynamical systems and bifurcation theory (Rio de Janeiro, 1985) Pitman Res. Notes Math. Ser., vol. 160, Longman Sci. Tech., Harlow, 1987, pp. 59–89. MR 907891
- J. E. Marsden and M. McCracken, The Hopf bifurcation and its applications, Applied Mathematical Sciences, Vol. 19, Springer-Verlag, New York, 1976. With contributions by P. Chernoff, G. Childs, S. Chow, J. R. Dorroh, J. Guckenheimer, L. Howard, N. Kopell, O. Lanford, J. Mallet-Paret, G. Oster, O. Ruiz, S. Schecter, D. Schmidt and S. Smale. MR 0494309, DOI 10.1007/978-1-4612-6374-6
- John Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 59–72. MR 556582, DOI 10.1007/BF02684769
- Shuhei Hayashi, Diffeomorphisms in $\scr F^1(M)$ satisfy Axiom A, Ergodic Theory Dynam. Systems 12 (1992), no. 2, 233–253. MR 1176621, DOI 10.1017/S0143385700006726
- Morris W. Hirsch and Charles C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 133–163. MR 0271991
- R. Labarca and M. J. Pacífico, Stability of singularity horseshoes, Topology 25 (1986), no. 3, 337–352. MR 842429, DOI 10.1016/0040-9383(86)90048-0
- C.A. Morales, M.J. Pacifico, E.R. Pujals, On $C^{1}$-robust transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris 326 (1998), 81–86.
- Jacob Palis and Floris Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, vol. 35, Cambridge University Press, Cambridge, 1993. Fractal dimensions and infinitely many attractors. MR 1237641
- L.P. Shilnikov, Talk at Nizhny-Novgorov University (1996).
Bibliographic Information
- C. A. Morales
- Affiliation: Université de Bourgogne, Laboratoire de Topologie, B.P.400, 21011, Dijon Cedex-France
- Address at time of publication: Instituto de Matemàtica, Universidade Federal do Rio de Janeiro, C.P. 68.530, CEP 21.945-970, Rio de Janeiro, Brazil
- MR Author ID: 611238
- ORCID: 0000-0002-4808-6902
- Email: cmorales@u-bourgogne.fr, morales@impa.br
- M. J. Pacifico
- Affiliation: Instituto de Matemàtica, Universidade Federal do Rio de Janeiro, C. P. 68.530, CEP 21.945-970, Rio de Janeiro, Brazil
- MR Author ID: 196844
- Email: pacifico@impa.br
- E. R. Pujals
- Email: enrique@impa.br
- Received by editor(s): November 24, 1997
- Received by editor(s) in revised form: January 22, 1998
- Published electronically: May 4, 1999
- Additional Notes: This work was partially supported by CNPq-Brasil, Faperj-Brasil, Pronex-Brasil. The first author was partially supported by CNRS-France.
- Communicated by: Mary Rees
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 3393-3401
- MSC (1991): Primary 58F10, 58F15
- DOI: https://doi.org/10.1090/S0002-9939-99-04936-9
- MathSciNet review: 1610761