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Abstract. We shall prove (a slightly more general version of) the following

theorem: let Φ be analytic in the closed unit disk D with Φ : [0, 1] → (0, 1],
and let B(z) be a finite Blaschke product. Then there exists a function h

satisfying: i) h analytic in the closed unit disk D, ii) h(0) > 0, iii) h(z) 6= 0

in D, such that

F (z) :=

∫ z

0
h(t)B(t)dt

satisfies

|F ′(z)| = Φ(|F (z)|2), z ∈ ∂D.

This completes a recent result of Kühnau for Φ(x) = 1 + αx, −1 < α < 0,
where this boundary value problem has a geometrical interpretation, namely
that β(α)F (r(α)z) preserves hyperbolic arc length on ∂D for suitable β(α),
r(α). For these important choices of Φ we also prove that the corresponding
functions h are uniquely determined by B, and that zh(z) is univalent in
D. Our work is related to Beurling’s and Avhadiev’s on conformal mappings
solving free boundary value conditions in the unit disk.

1. Introduction and statement of the results

In his work on Riemann’s mapping theorem, A. Beurling [3] studied existence
and uniqueness of conformal mappings f of the unit disk D := {z : |z| < 1},
normalized by f(0) = 0, f ′(0) = 1, and satisfying

|f ′(z)| = Φ(f(z)), |z| = 1,(1.1)

or rather

lim inf
|z|↑1

(|f ′(z)| − Φ(f(z))) = 0,(1.2)

where Φ is a bounded continuous positive real function in the complex plane C.
This concept was extended by F.G. Avhadiev ([2]), who replaced the domain D of
the functions under consideration by other domains, and was consequently lead to
modified conditions replacing (1.1), (1.2).

These considerations were made for univalent ‘solutions’ defined in D (or the
other domain), with no reference made to the possible analyticity of these functions
on or across the boundaries. In the present note we look for analytic solutions in D,
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and with the zeros of f ′ inside D prescribed. It is clear that the desired analyticity
requires corresponding restrictions on Φ, which we shall impose. The prescribed
zeros will be looked at in terms of corresponding finite Blaschke products

B(z) :=
n∏

k=1

z − zk

1− zkz
, zk ∈ D,

and we shall make use of the quantity

µ(B) := max
z∈D

∫ 1

0

|B(tz)|dt.

We write H(Ω) for the set of analytic functions in a set Ω and Dr := {z : |z| < r}.
Our main result is then

Theorem 1.1. Let Φ ∈ H(D), Φ : [0, 1] → (0, 1
µ(B) ), for some finite Blaschke

product B. Then there exists F ∈ H(D) with F (0) = 0 such that F ′ = Bh with
h ∈ H(D), h(z) 6= 0 in D, h(0) > 0, and

|F ′(z)| = Φ(|F (z)|2), |z| = 1.(1.3)

It is clear that the existence of such solutions is guaranteed for arbitrary B if
Φ(x) < 1 for 0 ≤ x ≤ 1. This can be slightly refined.

Theorem 1.2. Let Φ ∈ H(D), with Φ(x) > 0 for 0 ≤ x ≤ 1. If

min
0<x≤1

max
0≤t≤x

Φ(t2)

x
≤ 1,(1.4)

then the conclusion of Theorem 1.1 holds for every Blaschke product B. If, on the
other hand,

Φ(x2) > x, 0 ≤ x ≤ 1,(1.5)

then there is no locally univalent solution for (1.3) (i.e. for B ≡ 1 there is no
solution).

It should be observed that the latter fact does not contradict Beurling’s result,
since we are dealing with functions Φ on [0, 1] only.

The next question related to Theorem (1.1) concerns uniqueness of the solutions
F . In general, this will not be the case. It is easy to construct admissible functions
Φ for which (1.3) has, for instance, various monomial solutions of the form cz, c > 0.

The case n = 0 of the following theorem is due to R. Kühnau [7].

Theorem 1.3. Let the function Φ of Theorem 1.1 be such that Φ(x2)/x is strictly
decreasing. Let the Blaschke product be of the form B(z) = zn, n ∈ N0. Then there
exists at most one solution F in the sense of Theorem 1.1, and it is of the form
F (z) = czn+1, c > 0.

Note that this covers the cases

Φα(x) :=
{

1 + αx, −1 < α < 0,√
α(1 + x), 0 < α ≤ 1

4 .
(1.6)

It has been observed by R. Kühnau [7] that the solution of equation (1.3) for Φα

corresponds to the identification of analytic functions f ∈ H(Dr) with f(Dr) ⊂ D
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which preserve the hyperbolic (α < 0) respectively spherical (α > 0) length of the
arcs on |z| = r when mapped by f . Here α and r are related by

α =
±r2

(1± r2)2
.

Note that (1.5) holds for α > 1
4 .

The ‘hyperbolic’ case is the only one where we can prove general unicity for the
solutions F discussed in Theorem 1.1. This result was conjectured by Kühnau [7].

Theorem 1.4. Let Φ(x) = 1 + αx, −1 < α < 0. Then for every Blaschke product
B, the solution F in Theorem 1.1 is uniquely determined.

In his paper, Kühnau proved the existence of solutions as in Theorem 1.1 for Φα

with −1 < α ≤ 1
4 and Blaschke products of the form B(z) = (z− z0)/(1− z0z) and

small |z0|. His proof is constructive (although numerically prohibitively complex),
and was the first one to establish the existence of such functions. This also gave
a negative answer to the following question (related to Φα with α = − 1

4 , compare
R. Fournier and St. Ruscheweyh [5]):

Let F be analytic in the closed unit disk D with F (0) = 0 and

2|F ′(z)| = 1− |F (z)|2, z ∈ ∂D.(1.7)

Does this imply F (z) = czn for some c ∈ C, n ∈ N?
The functions satisfying (1.7) play an important role in a general multiplier

conjecture for univalent functions; see [5].
In spite of Kühnau’s examples and the results in Theorems 1.1 and 1.4 the

discussion of the functions solving (1.7) is by far not complete. We observe that
the ‘question’ has an affirmative answer for the Blaschke products B(z) = zn, n =
0, 1, . . . , a result also obtained by M. Agranovski and T. Bandman [1] (in a more
general version). They also proved that no normalized entire functions, except for
monomials, can satisfy (1.7). On the other hand, it is a consequence of general
results on Ricatti equations in the complex plane (cf. Bieberbach [4]) that any
solution of (1.7), related to a Blaschke product B and properly normalized, extends
meromorphically into C, except for possible branch points in the poles of B. This,
however, requires a more thorough investigation.

In this context we confine ourselves to pointing out a mapping property of the
functions zh corresponding to the solutions of F of (1.3) in the case of (1.6).

Theorem 1.5. Let −1 < α < 0 and Φ = Φα. Let F ′ = Bh for a solution F of
(1.3) in the sense of Theorem 1.1. Then

Re
(zh(z))′

h(z)
> 1 +

α

2
, z ∈ D.(1.8)

In particular, zh is starlike univalent (of order 1 + α
2 ) in D.

2. The general case

The proof for Theorem 1.1 uses ideas from Kühnau’s work [7]. However, we have
to replace the constructive portions by a non-constructive fixed point argument. We
shall make use of the notations

||f ||Ω := sup
z∈Ω

|f(z)|,
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and

WΩ := {f ∈ H(Ω) : ||f ||Ω ≤ 1}, Wδ := WD1+δ
(δ > 0).

Lemma 2.1. Let Φ ∈ H(D), with Φ(x) > 0 for x ≥ 0, and let g ∈ WΩ for some
domain Ω ⊃ D. Then there exists a uniquely determined function h ∈ H(Ω) with
h(z) 6= 0 for z ∈ D, h(0) > 0, such that

|h(z)| = Φ(|g(z)|2), |z| = 1.

Proof. Define

h(z) := exp
{

1
2π

∫ 2π

0

(log Φ(|g(eiτ )|2))1 + e−iτz

1 − e−iτz
dτ

}
, z ∈ D,

so that h ∈ H(D) and |h| extends continuously (with |h| 6= 0) into D. By assumption
we have Φ(g(z)g(1/z)) ∈ H(Aρ), where Aρ := {z : ρ < |z| < 1

ρ} for some ρ < 1,
but close to 1. Hence

Q(z) :=
Φ(g(z)g(1/z))

h(z)
∈ H(D ∩ Aρ),

and |Q(z)| extends continuously to D ∩ Aρ, with |Q(z)| = 1 on ∂D. By the (ex-
tended) Schwarz reflection principle, we deduce that Q has an analytic extension
across ∂D, so that also h ∈ H(Dr) for some r > 1. We can now use the relation

h(z) =
Φ2(g(z)g(1/z))

h(1/z))

to analytically extend h into the whole of Ω \ D. The assertion concerning unicity
of h is obvious.

Proof (Theorem 1.1). We define δ > 0 to be the solution of

µ(B)M(Φ) + δ
||Φ||2D
m(Φ)

||B||D1+δ
= 1,

where

0 < m(Φ) := min
0≤x≤1

Φ(x) ≤ max
0≤x≤1

Φ(x) =: M(Φ) <
1

µ(B)
.

We now define T : Wδ → H(D1+δ) by

T : g 7→ F, F (z) :=
∫ z

0

B(t)h(t)dt,

where h is the function corresponding to g in the sense of Lemma 2.1. It is immedi-
ately clear that T is a continuous (in the topology of locally uniform convergence in
H(D1+δ)) operator, acting on the convex and compact subspace Wδ. Furthermore,

T (Wδ) ⊂ Wδ.(2.1)

In fact, for F = T (g) we have |F ′(z)| = |B(z)||h(z)| ≤ |B(z)|M(Φ) in D by the
maximum principle, and therefore

|F (z)| ≤ max
z∈D

∫ 1

0

|F ′(tz)|dt ≤ µ(B)M(Φ), z ∈ D.

Using the minimum principle we obtain

|h(z)| ≥ m(Φ), z ∈ D.(2.2)
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Furthermore, for 1 < |z| < 1 + δ,

h(z) =
Φ2(g(z)g(1/z))

h(1/z)
,

which together with (2.2) gives

|h(z)| ≤ ||Φ||2D
m(Φ)

, z ∈ D1+δ.

Hence,

|F (z)| ≤ |F (
z

|z|)|+ |F (z)− F (
z

|z| )|

≤ µ(B)M(Φ) +
∫ 1+δ

1

max
φ∈R

|h(teiφ)B(teiφ)|dt

≤ µ(B)M(Φ) + δ
||Φ||2D
m(Φ)

||B||D1+δ
= 1.

This implies F ∈ Wδ as required.
Schauder’s principle provides us now with a fixed point F = T (F ) ∈ Wδ. Clearly

F satisfies (1.3).

Proof (Theorem 1.2). Our assumption yields some x0 ∈ (0, 1] with Φ(x2
0)/x0 ≤ 1,

which in turn shows the existence of some c ∈ (0, x0] with Φ(c2) = c. Thus
F (z) = cBz solves (1.3) for |B| ≡ 1.

For non-constant B we have µ(B) < 1. Then

Ψ(x) :=
Φ(x2

0x)
x0

, x ∈ [0, 1],

satisfies 0 < Ψ(x) ≤ 1 < 1
µ(B) , and therefore we can apply Theorem 1.1 to find a

solution F ∗ corresponding to Ψ and B. Clearly F := x0F
∗ solves the same problem

for Φ and B.
Next assume (1.5) and let B ≡ 1, so that the corresponding F (z) should be

locally univalent in D, with F (0) = 0. This implies

zF ′(z)
F (z)

∣∣∣∣
z=0

= 1,

and therefore

sup
|z|↑1

∣∣∣∣ F (z)
zF ′(z)

∣∣∣∣ ≥ 1, or inf
|z|↑1

∣∣∣∣zF ′(z)
F (z)

∣∣∣∣ ≤ 1.

This contradicts ∣∣∣∣zF ′(z)
F (z)

∣∣∣∣ =
Φ(|F (z)|2)
|F (z)| > 1, |z| = 1.

In the proof of Theorem 1.3 we shall use the following well-known result.

Lemma 2.2 (Jack [6]). Let w ∈ H(D) have a n-fold zero in the origin and assume
that |w(z0)| ≥ |w(z)| holds for all z with |z| ≤ |z0| ≤ 1. Then z0w

′(z0)/w(z0) ≥ n.
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Proof (Theorem 1.3). Choose z0 ∈ ∂D with |F (z0)| ≥ |F (z)|, z ∈ D. From our
assumptions and Lemma 2.2 we get

zF ′(z)
F (z)

∣∣∣∣
z=0

= n + 1,
z0F

′(z0)
F (z0)

≥ n + 1.

We distinguish two cases, related to the quantity

τ := min
|z|=1

∣∣∣∣zF ′(z)
F (z)

∣∣∣∣ =
∣∣∣∣z1F

′(z1)
F (z1)

∣∣∣∣ ,
where z1 ∈ ∂D. If τ ≥ n + 1 we find, by the maximum principle,∣∣∣∣∣∣∣∣ F (z)

zF ′(z)

∣∣∣∣∣∣∣∣ ≤ 1
n + 1

=
F (z)

zF ′(z)

∣∣∣∣
z=0

,

which implies zF ′(z)/F (z) ≡ const., the assertion. On the other hand, if τ < n+1,
then

Φ(|F (z1)|2)
|F (z1)| =

∣∣∣∣z1F
′(z1)

F (z1)

∣∣∣∣ <

∣∣∣∣z0F
′(z0)

F (z0)

∣∣∣∣ =
Φ(|F (z0)|2)
|F (z0)| ,

which contradicts our assumption, since |F (z1)| < |F (z0)|.

3. The hyperbolic case

Our proof of Theorem 1.4 is based on the following uniqueness statement for
Dirichlet’s problem for (3.1) (compare Sato [8],[9] for somewhat stronger versions).

Lemma 3.1. Let J : D×R → R be such that for arbitrary z ∈ D the function J(z, t)
is non-decreasing for t ∈ R. Then there exists at most one solution u = u(z, z) of

uzz = J(z, u), z ∈ D,(3.1)

which extends continuously into D, and assumes prescribed continuous boundary
values on ∂D.

Proof (Theorem 1.4). Let B be an arbitrary finite Blaschke product, and assume
that Fj , j = 1, 2, are solutions such that F ′

j = Bhj with non-vanishing functions
hj in D, hj(0) > 0. Define

uj(z, z) := log
( |hj(z)|

1 + α|Fj(z)|2
)

.

Then each uj is continuous in D and a simple calculation shows that

(uj)zz = −α|B(z)|2e2uj .

Furthermore, uj = 0 on ∂D. Lemma 3.1 now gives

|F ′
1(z)|

1 + α|F1(z)|2 =
|F ′

2(z)|
1 + α|F2(z)|2 , z ∈ D.

This latter relation is easily seen to imply F1 = F2, taking into account the nor-
malizations used.

Proof (Theorem 1.5). We need to prove (1.8) for z ∈ ∂D only. Let u ∈ ∂D be fixed.
If F (u) = 0 we see that the function |zh(z)| assumes a maximum w.r.t. D in u, and
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an application of Lemma (2.2) yields (1.8). Hence we may assume F (u) 6= 0. We
define

w(z) := zh(z) + µG(z), where G(z) := −α
F 2(z)

z
, µ :=

uh(u)
|h(u)|

|G(u)|
G(u)

,

so that, by assumption,

w ∈ H(D), ||w||D = 1, w(u) =
uh(u)
|h(u)| .

Note that Lemma (2.2) applies to w at z0 = u. We now get

Re
(uh(u))′

h(u)
=

w′(u)
h(u)

− µ
G′(u)
h(u)

=
1

|h(u)|
uw′(u)
w(u)

+ 2αRe
(

µ
F ′(u)
h(u)

F (u)
u

)
+

1
|h(u)| − 1

≥ 2
|h(u)| + 2α|F (u)| − 1

=
2α2|F (u)|4

1 + α|F (u)|2 −
α

2
(1− 2|F (u)|)2 + 1 +

α

2

≥ 1 +
α

2
,

which is our assertion.

4. Open problems

There is a number of intriguing open problems in the context of this note. We
explain some of them.

1. Unicity. There is a large gap between Theorems 1.3 and 1.4. What are the
right conditions on Φ to ensure the uniqueness of the solutions in Theoren 1.1?
The unicity statement in Beurling’s paper may hint in the right direction.

2. The hyperbolic case.
(a) Let f ∈ H(Dr) for some r < 1, and f(Dr) ⊂ D, be such that f maps arcs

Γ ∈ ∂Dr onto arcs in D with the same hyperbolic length. As indicated
above, this leads to the condition

|F ′(z)| = 1− β2|F (z)|2, |z| = 1,(4.1)

for F (z) := 1
β f( z

r ), β = r
1−r2 . Obviously, the methods developed in this

paper work only for r < (
√

5−1)/2, while for larger values of r additional
difficulties arise.

(b) Even for the cases where our methods work (and B is ‘non-trivial’) there
is not a single ‘example’ for such a solution. No numerical method seems
available to calculate even a single value of any such function in any given
point z 6= 0.

(c) The case β = 0 in (4.1) can be looked at as the euclidean limiting case of
this hyperbolic situation, where all solutions are given by F ′ = B, i.e. F ′

rational. For β 6= 0 the existence of solutions F with F ′ rational is not
known.

(d) Is it true that every solution F in the hyperbolic case (or beyond) can have
singularities (namely branch points) only in the poles of the corresponding
B?
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(e) Assume that F ′ ∈ H(D), continuous in D, and that F satisfies (4.1) on
∂D. Then the unicity statement of Theorem 1.4 implies that F must
be identical (up to a constant factor) with one of the functions of Theo-
rem 1.1 with suitable B, i.e. F has an analytic extension onto D. This
is, for α = 0, some form of the extended Schwarz reflection principle,
but now for our ‘free’ boundary conditions. It is an interesting open
question whether this extends to proper subarcs of ∂D, namely: assume
F ′ ∈ H(D) is continuous in D∪Γ, where Γ is a proper subarc of ∂D, and
that F satisfies (4.1) on Γ. Does F extend analytically across Γ ?

3. The spherical case. Here we deal with meromorphic functions f in Dr for
some r > 0, which preserve the spherical length of arcs on ∂Dr. It is clear that
a number of new problems arise in comparison with the hyperbolic case. The
methods described in this note handle (partially) only the cases r ≤ 1 and
f ∈ H(Dr), and show that for r > 1 we cannot expect solutions for arbitrary
choices of B. The questions described above for the hyperbolic case are open
for these cases as well.
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