Free boundary value problems for analytic functions in the closed unit disk
HTML articles powered by AMS MathViewer
- by Richard Fournier and Stephan Ruscheweyh
- Proc. Amer. Math. Soc. 127 (1999), 3287-3294
- DOI: https://doi.org/10.1090/S0002-9939-99-04960-6
- Published electronically: May 11, 1999
- PDF | Request permission
Abstract:
We shall prove (a slightly more general version of) the following theorem: let $\Phi$ be analytic in the closed unit disk $\overline {\mathbb {D}}$ with $\Phi :[0,1]\rightarrow (0,1]$, and let $B(z)$ be a finite Blaschke product. Then there exists a function $h$ satisfying: i) $h$ analytic in the closed unit disk $\overline {\mathbb {D}}$, ii) $h(0)>0$, iii) $h(z)\neq 0$ in $\overline {\mathbb {D}}$, such that \[ F(z):=\int _{0}^{z}h(t)B(t)dt \] satisfies \[ |F’(z)|=\Phi (|F(z)|^2), \quad z\in \partial \mathbb {D}. \] This completes a recent result of Kühnau for $\Phi (x)=1+\alpha x$, $-1<\alpha <0$, where this boundary value problem has a geometrical interpretation, namely that $\beta (\alpha )F(r(\alpha )z)$ preserves hyperbolic arc length on $\partial \mathbb {D}$ for suitable $\beta (\alpha ),$ $r(\alpha )$. For these important choices of $\Phi$ we also prove that the corresponding functions $h$ are uniquely determined by $B$, and that $zh(z)$ is univalent in $\mathbb {D}$. Our work is related to Beurling’s and Avhadiev’s on conformal mappings solving free boundary value conditions in the unit disk.References
- M. L. Agranovsky and T. M. Bandman, Remarks on a conjecture of Ruscheweyh, Complex Variables Theory Appl. 31 (1996), no. 3, 249–258. MR 1423254, DOI 10.1080/17476939608814963
- F. G. Avkhadiev, Conformal mappings that satisfy the boundary condition of the equality of metrics, Dokl. Akad. Nauk 347 (1996), no. 3, 295–297 (Russian). MR 1393054
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- L. Bieberbach, Gewöhnliche Differentialgleichungen, Springer-Verlag, Berlin-Göttingen-Heidelberg-New York, 1965.
- Richard Fournier and Stephan Ruscheweyh, Remarks on a multiplier conjecture for univalent functions, Proc. Amer. Math. Soc. 116 (1992), no. 1, 35–43. MR 1101983, DOI 10.1090/S0002-9939-1992-1101983-2
- I. S. Jack, Functions starlike and convex of order $\alpha$, J. London Math. Soc. (2) 3 (1971), 469–474. MR 281897, DOI 10.1112/jlms/s2-3.3.469
- Reiner Kühnau, Längentreue Randverzerrung bei analytischer Abbildung in hyperbolischer und Sphärischer Metrik, Mitt. Math. Sem. Giessen 229 (1997), 45–53 (German). MR 1439207
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Tokui Sat\B{o}, Sur le problème de Dirichlet généralisé pour l’équation $\Delta u=f(P,\,u,\,\partial u)$, Compositio Math. 14 (1960), 237–259 (1960) (French). MR 140811
Bibliographic Information
- Richard Fournier
- Affiliation: Centre de Recherches de Mathématiques, Université de Montréal, Montréal, Canada H3C 3J7
- MR Author ID: 217123
- Email: fournier@DMS.UMontreal.CA
- Stephan Ruscheweyh
- Affiliation: Mathematisches Institut, Universität Würzburg D-97074 Würzburg, Germany
- Email: ruscheweyh@mathematik.uni-wuerzburg.de
- Received by editor(s): February 2, 1998
- Published electronically: May 11, 1999
- Additional Notes: The first author acknowledges support of FCAR (Quebec).
- Communicated by: Albert Baernstein II
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 3287-3294
- MSC (1991): Primary 30C45; Secondary 30C55
- DOI: https://doi.org/10.1090/S0002-9939-99-04960-6
- MathSciNet review: 1618666