Asymptotic Eulerian expansions for binomial and negative binomial reciprocals
HTML articles powered by AMS MathViewer
- by Ewa Marciniak and Jacek Wesołowski
- Proc. Amer. Math. Soc. 127 (1999), 3329-3338
- DOI: https://doi.org/10.1090/S0002-9939-99-05105-9
- Published electronically: May 3, 1999
- PDF | Request permission
Abstract:
Asymptotic expansions of any order for expectations of inverses of random variables with positive binomial and negative binomial distributions are obtained in terms of the Eulerian polynomials. The paper extends and improves upon an expansion due to David and Johnson (1956-7).References
- Chao, M.Y., Strawderman, W.E. (1972) Negative moments of positive random variables. Journal of the American Statistical Association 67, 429-431.
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Noel Cressie, Anne S. Davis, J. Leroy Folks, and George E. Policello II, The moment-generating function and negative integer moments, Amer. Statist. 35 (1981), no. 3, 148–150. MR 632425, DOI 10.2307/2683982
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Jacques Désarménien and Dominique Foata, The signed Eulerian numbers, Discrete Math. 99 (1992), no. 1-3, 49–58. MR 1158779, DOI 10.1016/0012-365X(92)90364-L
- Dominique Foata and Marcel-P. Schützenberger, Théorie géométrique des polynômes eulériens, Lecture Notes in Mathematics, Vol. 138, Springer-Verlag, Berlin-New York, 1970 (French). MR 0272642, DOI 10.1007/BFb0060799
- Zakkula Govindarajulu, Recurrence relations for the inverse moments of the positive binomial variable, J. Amer. Statist. Assoc. 58 (1963), 468–473. MR 149583, DOI 10.1080/01621459.1963.10500859
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1989. A foundation for computer science. MR 1001562
- M. C. Jones, Inverse factorial moments, Statist. Probab. Lett. 6 (1987), no. 1, 37–42. MR 907257, DOI 10.1016/0167-7152(87)90056-3
- D. G. Kabe, Inverse moments of discrete distributions, Canad. J. Statist. 4 (1976), no. 1, 133–141 (English, with French summary). MR 448656, DOI 10.2307/3315269
- W. Mendenhall and E. H. Lehman Jr., An approximation to the negative moments of the positive binomial useful in life testing, Technometrics 2 (1960), 227–242. MR 114279, DOI 10.2307/1266547
- M. N. Patel and A. V. Gajjar, Some results on maximum likelihood estimators of parameters of exponential distribution under type I progressive censoring with changing failure rates, Comm. Statist. Theory Methods 24 (1995), no. 9, 2421–2435. MR 1350669, DOI 10.1080/03610929508831624
- Rempala, G., Székely, G.J. (1998) On estimation with elementary symmetric polynomials. Random Operations and Stochastic Equations 6, 77–88.
- Edward B. Rockower, Integral identities for random variables, Amer. Statist. 42 (1988), no. 1, 68–72. MR 936685, DOI 10.2307/2685265
- D. D. Stancu, On the moments of negative order of the positive Bernoulli and Poisson variables, Studia Univ. Babeş-Bolyai Ser. Math.-Phys. 13 (1968), no. 1, 27–31 (English, with Romanian and Russian summaries). MR 226765
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
- Szabłowski, P.J., Wesołowski, J., Wieczorkowski, R. (1996), Estymacja w podpopulacjach. Wiadomości Statystyczne 41(7), 1-13 (in Polish).
- Szabłowski, P.J., Wesołowski, J., Wieczorkowski, R. (1997), Estimation in subpopulations. Bulletin of the International Statistical Institute 57(2) (51st Session, Contributed Papers), 365-366.
- P. Thionet, Sur le moment d’ordre $(-1)$ de la distribution binomiale tronquée application à l’échantillonnage de Hájek, Publ. Inst. Statist. Univ. Paris 12 (1963), 93–102 (French). MR 176555
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
Bibliographic Information
- Ewa Marciniak
- Affiliation: Mathematical Institute, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
- Email: wesolo@alpha.im.pw.edu.pl
- Jacek Wesołowski
- Affiliation: Mathematical Institute, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
- Received by editor(s): January 14, 1998
- Published electronically: May 3, 1999
- Communicated by: Wei-Yin Loh
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 3329-3338
- MSC (1991): Primary 60E05, 62E20; Secondary 11B68, 05A16
- DOI: https://doi.org/10.1090/S0002-9939-99-05105-9
- MathSciNet review: 1637400