Normalizers of the congruence subgroups of the Hecke group $G_5$
HTML articles powered by AMS MathViewer
- by Mong-Lung Lang and Ser-Peow Tan
- Proc. Amer. Math. Soc. 127 (1999), 3131-3140
- DOI: https://doi.org/10.1090/S0002-9939-99-05154-0
- Published electronically: May 4, 1999
- PDF | Request permission
Abstract:
Let $\lambda = 2$cos$(\pi /5)$ and let $G$ be the Hecke group associated to $\lambda$. In this article, we show that for $\tau$ a prime ideal in $\mathbb {Z}[\lambda ]$, the congruence subgroups $G_{0}(\tau )$ of $G$ are self-normalized in $PSL_{2}(\mathbb {R})$.References
- A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma _{0}(m)$, Math. Ann. 185 (1970), 134β160. MR 268123, DOI 10.1007/BF01359701
- J. H. Conway, Understanding groups like $\Gamma _0(N)$, Groups, difference sets, and the Monster (Columbus, OH, 1993) Ohio State Univ. Math. Res. Inst. Publ., vol. 4, de Gruyter, Berlin, 1996, pp.Β 327β343. MR 1400424
- S. P. Chan, M. L. Lang, C. H. Lim, S. P. Tan, The invariants of the congruence subgroups $G_{0}(P)$ of the Hecke group, Illinois J. of Math. $38$ ($1994$), $636-652$.
- Armin Leutbecher, Γber die Heckeschen Gruppen ${\mathfrak {G}}(\lambda )$, Abh. Math. Sem. Univ. Hamburg 31 (1967), 199β205 (German). MR 228438, DOI 10.1007/BF02992399
- Armin Leutbecher, Γber die Heckeschen Gruppen $G(\lambda )$. II, Math. Ann. 211 (1974), 63β86 (German). MR 347736, DOI 10.1007/BF01344143
- M. L. Lang, S. P. Tan, Normalizer of the congruence subgroups of the Hecke groups $G_{4}$ and $G_{6}$., (in preparation).
- Mong-Lung Lang, Chong-Hai Lim, and Ser Peow Tan, Independent generators for congruence subgroups of Hecke groups, Math. Z. 220 (1995), no.Β 4, 569β594. MR 1363856, DOI 10.1007/BF02572632
- M. L. Lang, C. H. Lim, S. P. Tan, Principal congruence subgroups of the Hecke groups, (submitted for publication).
- J. Lehner and M. Newman, Weierstrass points of $\Gamma _{0}\,(n)$, Ann. of Math. (2) 79 (1964), 360β368. MR 161841, DOI 10.2307/1970550
- L. Alayne Parson, Generalized Kloosterman sums and the Fourier coefficients of cusp forms, Trans. Amer. Math. Soc. 217 (1976), 329β350. MR 412112, DOI 10.1090/S0002-9947-1976-0412112-8
- David Rosen, The substitutions of Hecke group $\Gamma (2\,\textrm {cos}(\pi /5))$, Arch. Math. (Basel) 46 (1986), no.Β 6, 533β538. MR 849858, DOI 10.1007/BF01195021
Bibliographic Information
- Mong-Lung Lang
- Affiliation: Department of Mathematics, National University of Singapore, Singapore 119260, Republic of Singapore
- Email: matlml@math.nus.edu.sg
- Ser-Peow Tan
- Affiliation: Department of Mathematics, National University of Singapore, Singapore 119260, Republic of Singapore
- Received by editor(s): January 10, 1998
- Published electronically: May 4, 1999
- Communicated by: Ronald M. Solomon
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 3131-3140
- MSC (1991): Primary 11F06
- DOI: https://doi.org/10.1090/S0002-9939-99-05154-0
- MathSciNet review: 1641120