Densely hereditarily hypercyclic sequences and large hypercyclic manifolds
HTML articles powered by AMS MathViewer
- by Luis Bernal-González
- Proc. Amer. Math. Soc. 127 (1999), 3279-3285
- DOI: https://doi.org/10.1090/S0002-9939-99-05185-0
- Published electronically: May 13, 1999
- PDF | Request permission
Abstract:
We prove in this paper that if $(T_{n})$ is a hereditarily hypercyclic sequence of continuous linear mappings between two topological vector spaces $X$ and $Y$, where $Y$ is metrizable, then there is an infinite-dimensional linear submanifold $M$ of $X$ such that each non-zero vector of $M$ is hypercyclic for $(T_{n})$. If, in addition, $X$ is metrizable and separable and $(T_{n})$ is densely hereditarily hypercyclic, then $M$ can be chosen dense.References
- Shamim I. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995), no. 2, 374–383. MR 1319961, DOI 10.1006/jfan.1995.1036
- Nelson Dunford, A mean ergodic theorem, Duke Math. J. 5 (1939), 635–646. MR 98
- L. BERNAL-GONZÁLEZ, On hypercyclic operators on Banach spaces, Proc. Amer. Math. Soc., to appear.
- L. BERNAL-GONZÁLEZ, Hypercyclic sequences of differential and antidifferential operators, J. Approx. Theory, to appear.
- J. BES, Invariant manifolds of hypercyclic vectors for the real scalar case, Proc. Amer. Math. Soc., to appear.
- J. BONET and A. PERIS, Hypercyclic operators on non-normable Fréchet spaces, J. Funct. Anal., to appear.
- Paul S. Bourdon, Invariant manifolds of hypercyclic vectors, Proc. Amer. Math. Soc. 118 (1993), no. 3, 845–847. MR 1148021, DOI 10.1090/S0002-9939-1993-1148021-4
- Paul S. Bourdon and Joel H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997), no. 596, x+105. MR 1396955, DOI 10.1090/memo/0596
- Robert M. Gethner and Joel H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281–288. MR 884467, DOI 10.1090/S0002-9939-1987-0884467-4
- Gilles Godefroy and Joel H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), no. 2, 229–269. MR 1111569, DOI 10.1016/0022-1236(91)90078-J
- Karl-Goswin Große-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Giessen 176 (1987), iv+84 (German). Dissertation, University of Trier, Trier, 1987. MR 877464
- Domingo A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99 (1991), no. 1, 179–190. MR 1120920, DOI 10.1016/0022-1236(91)90058-D
- Gerd Herzog, On a theorem of Seidel and Walsh, Period. Math. Hungar. 30 (1995), no. 3, 205–210. MR 1334965, DOI 10.1007/BF01876619
- Robert G. Bartle, The elements of integration, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0200398
- C. KITAI, Invariant closed sets for linear operators, Dissertation, University of Toronto, 1982.
- Shamim I. Ansari, Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal. 148 (1997), no. 2, 384–390. MR 1469346, DOI 10.1006/jfan.1996.3093
- Alfonso Montes-Rodríguez, Banach spaces of hypercyclic vectors, Michigan Math. J. 43 (1996), no. 3, 419–436. MR 1420585, DOI 10.1307/mmj/1029005536
- S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17–22. MR 241956, DOI 10.4064/sm-32-1-17-22
Bibliographic Information
- Luis Bernal-González
- Affiliation: Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, Sevilla 41080, Spain
- Email: lbernal@cica.es
- Received by editor(s): February 2, 1998
- Published electronically: May 13, 1999
- Additional Notes: This research was supported in part by DGES grant #PB96–1348 and the Junta de Andalucía
- Communicated by: David R. Larson
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 3279-3285
- MSC (1991): Primary 47B99; Secondary 46A99, 30E10, 32A07
- DOI: https://doi.org/10.1090/S0002-9939-99-05185-0
- MathSciNet review: 1646318