Invariant measures for certain linear fractional transformations mod 1
HTML articles powered by AMS MathViewer
- by Karlheinz Gröchenig and Andrew Haas
- Proc. Amer. Math. Soc. 127 (1999), 3439-3444
- DOI: https://doi.org/10.1090/S0002-9939-99-05008-X
- Published electronically: July 20, 1999
- PDF | Request permission
Abstract:
Explicit invariant measures are derived for a family of finite-to-one, ergodic transformations of the unit interval having indifferent periodic orbits.References
- R. L. Adler. Geodesic flows, interval maps and symbolic dynamics. In “Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces”, T. Bedford, H. Keane, C. Series, eds., Oxford Univ. Press, 1991.
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. MR 1393195
- I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskiĭ. MR 832433, DOI 10.1007/978-1-4615-6927-5
- Karlheinz Gröchenig and Andrew Haas, Backward continued fractions, Hecke groups and invariant measures for transformations of the interval, Ergodic Theory Dynam. Systems 16 (1996), no. 6, 1241–1274. MR 1424398, DOI 10.1017/S0143385700010014
- Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171, DOI 10.1007/978-3-642-78043-1
- Maximilian Thaler, Transformations on $[0,\,1]$ with infinite invariant measures, Israel J. Math. 46 (1983), no. 1-2, 67–96. MR 727023, DOI 10.1007/BF02760623
Bibliographic Information
- Karlheinz Gröchenig
- Affiliation: Department of Mathematics U-3009, The University of Connecticut, Storrs, Connecticut 06269-3009
- Email: groch@math.uconn.edu
- Andrew Haas
- Affiliation: Department of Mathematics U-3009, The University of Connecticut, Storrs, Connecticut 06269-3009
- Email: haas@math.uconn.edu
- Received by editor(s): January 1, 1998
- Published electronically: July 20, 1999
- Additional Notes: The second author would like to thank the University of Washington for kindly providing access to their research facilities while this paper was in preparation.
- Communicated by: Linda Keen
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 3439-3444
- MSC (1991): Primary 11J70, 58F11, 58F03
- DOI: https://doi.org/10.1090/S0002-9939-99-05008-X
- MathSciNet review: 1622738