Irreducible representations of the Cuntz algebra $\mathcal {O}_N$
HTML articles powered by AMS MathViewer
- by Eui-Chai Jeong
- Proc. Amer. Math. Soc. 127 (1999), 3583-3590
- DOI: https://doi.org/10.1090/S0002-9939-99-05018-2
- Published electronically: May 17, 1999
- PDF | Request permission
Abstract:
In this paper, we establish formulas for the configuration of a special class of irreducible representations of the Cuntz algebra $\mathcal {O}_{N}$, $N=2,3,\dots ,\infty$. These irreducible representations arise as subrepresentations of naturally occurring representations of $\mathcal {O}_{N}$ acting in $L^{2}\left ( \mathbb {T}\right )$ and arise from consideration of multiresolution wavelet filters.References
- Ola Bratteli, George A. Elliott, David E. Evans, and Akitaka Kishimoto, Quasi-product actions of a compact abelian group on a $C^*$-algebra, Tohoku Math. J. (2) 41 (1989), no. 1, 133–161. MR 985307, DOI 10.2748/tmj/1178227871
- Ola Bratteli and Palle E.T. Jorgensen, Iterated function systems and permutation representations of the Cuntz algebra, Mem. Amer. Math. Soc., to appear.
- O. Bratteli and P. E. T. Jorgensen, Endomorphisms of ${\scr B}({\scr H})$. II. Finitely correlated states on ${\scr O}_n$, J. Funct. Anal. 145 (1997), no. 2, 323–373. MR 1444086, DOI 10.1006/jfan.1996.3033
- Ola Bratteli and Palle E.T. Jorgensen, Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale ${N}$, Integral Equations Operator Theory 28 (1997), 382–443.
- Ola Bratteli, Palle E. T. Jorgensen, and Geoffrey L. Price, Endomorphisms of ${\scr B}({\scr H})$, Quantization, nonlinear partial differential equations, and operator algebra (Cambridge, MA, 1994) Proc. Sympos. Pure Math., vol. 59, Amer. Math. Soc., Providence, RI, 1996, pp. 93–138. MR 1392986, DOI 10.1090/pspum/059/1392986
- Albert Cohen and Robert D. Ryan, Wavelets and multiscale signal processing, Applied Mathematics and Mathematical Computation, vol. 11, Chapman & Hall, London, 1995. Revised version of Cohen’s doctoral thesis [Ondelettes et traitement numérique du signal, Masson, Paris, 1992; MR1269539 (95g:42038)]; Translated from the French by Ryan. MR 1386391, DOI 10.1007/978-1-4899-4425-2
- Joachim Cuntz, Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173–185. MR 467330
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Eui-Chai Jeong, Decomposition of Cuntz algebra representation, Ph.D. thesis, The University of Iowa, 1997.
- Eui-Chai Jeong, A number system in $\mathbb {R}^{n}$, Seoul National University, in preparation.
- Palle E.T. Jorgensen, Harmonic analysis of fractal processes via ${C}^{\ast }$-algebras, Math. Nachr., to appear.
- Palle E. T. Jorgensen and Steen Pedersen, Harmonic analysis and fractal limit-measures induced by representations of a certain $C^*$-algebra, J. Funct. Anal. 125 (1994), no. 1, 90–110. MR 1297015, DOI 10.1006/jfan.1994.1118
- P. E. T. Jorgensen and S. Pedersen, Harmonic analysis of fractal measures, Constr. Approx. 12 (1996), no. 1, 1–30. MR 1389918, DOI 10.1007/s003659900001
- Robert T. Powers, An index theory for semigroups of $^*$-endomorphisms of ${\scr B}({\scr H})$ and type $\textrm {II}_1$ factors, Canad. J. Math. 40 (1988), no. 1, 86–114. MR 928215, DOI 10.4153/CJM-1988-004-3
Bibliographic Information
- Eui-Chai Jeong
- Affiliation: Department of Mathematics, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea
- Email: jeong@cau.ac.kr
- Received by editor(s): February 16, 1998
- Published electronically: May 17, 1999
- Communicated by: David R. Larson
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 3583-3590
- MSC (1991): Primary 46L30, 46L55, 46L89, 47A13, 47A67; Secondary 47A20, 47D25, 43A65
- DOI: https://doi.org/10.1090/S0002-9939-99-05018-2
- MathSciNet review: 1621953