The Diophantine equation $b^2X^4-dY^2=1$
HTML articles powered by AMS MathViewer
- by Michael A. Bennett and Gary Walsh
- Proc. Amer. Math. Soc. 127 (1999), 3481-3491
- DOI: https://doi.org/10.1090/S0002-9939-99-05041-8
- Published electronically: May 6, 1999
- PDF | Request permission
Abstract:
If $b$ and $d$ are given positive integers with $b > 1$, then we show that the equation of the title possesses at most one solution in positive integers $X,Y$. Moreover, we give an explicit characterization of this solution, when it exists, in terms of fundamental units of associated quadratic fields. The proof utilizes estimates for linear forms in logarithms of algebraic numbers in conjunction with properties of Pellian equations and the Jacobi symbol and explicit determination of the integer points on certain elliptic curves.References
- A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge Philos. Soc. 65 (1969), 439–444. MR 234912, DOI 10.1017/s0305004100044418
- M.A. Bennett. On consecutive integers of the form $ax^2, by^2$ and $cz^2$. submitted for publication.
- Richard T. Bumby, The Diophantine equation $3x^{4}-2y^{2}=1$, Math. Scand. 21 (1967), 144–148. MR 245512, DOI 10.7146/math.scand.a-10854
- Zhen Fu Cao, A study of some Diophantine equations, J. Harbin Inst. Tech. 3 (1988), 1–7 (Chinese, with English summary). MR 969961
- Jian Hua Chen and Paul Voutier, Complete solution of the Diophantine equation $X^2+1=dY^4$ and a related family of quartic Thue equations, J. Number Theory 62 (1997), no. 1, 71–99. MR 1430002, DOI 10.1006/jnth.1997.2018
- J. H. E. Cohn, The Diophantine equation $x^4-Dy^2=1$. II, Acta Arith. 78 (1997), no. 4, 401–403. MR 1438594, DOI 10.4064/aa-78-4-401-403
- S. David. Minorations de formes linéaires de logarithmes elliptiques. Publ. Math. Univ. Pierre et Marie Curie 106, Problèmes diophantiens 1991–1992, exposé no. 3.
- J. Gebel, A. Pethő, and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), no. 2, 171–192. MR 1305199, DOI 10.4064/aa-68-2-171-192
- J. Gebel, A. Pethő and H.G. Zimmer. On Mordell’s equation. Compositio Math. 110 (1998), 335–367.
- Michel Laurent, Maurice Mignotte, and Yuri Nesterenko, Formes linéaires en deux logarithmes et déterminants d’interpolation, J. Number Theory 55 (1995), no. 2, 285–321 (French, with English summary). MR 1366574, DOI 10.1006/jnth.1995.1141
- Maohua Le, On the Diophantine equation $D_1x^4-D_2y^2=1$, Acta Arith. 76 (1996), no. 1, 1–9. MR 1390566, DOI 10.4064/aa-76-1-1-9
- D.H. Lehmer. An extended theory of Lucas functions. Ann. Math. 31 (1930), 419–448.
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8
- W. Ljunggren, On the diophantine equation $Ax^{4}-By^{2}=C\,(C=1,\,4)$, Math. Scand. 21 (1967), 149–158 (1969). MR 245514, DOI 10.7146/math.scand.a-10855
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- R. J. Stroeker and N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), no. 2, 177–196. MR 1291875, DOI 10.4064/aa-67-2-177-196
- N. Tzanakis, Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations, Acta Arith. 75 (1996), no. 2, 165–190. MR 1379397, DOI 10.4064/aa-75-2-165-190
- Paul M. Voutier, An upper bound for the size of integral solutions to $Y^m=f(X)$, J. Number Theory 53 (1995), no. 2, 247–271. MR 1348763, DOI 10.1006/jnth.1995.1090
- B. M. M. de Weger, Algorithms for Diophantine equations, CWI Tract, vol. 65, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. MR 1026936
- Don Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), no. 177, 425–436. MR 866125, DOI 10.1090/S0025-5718-1987-0866125-3
- Wei San Zhu, Necessary and sufficient conditions for the solvability of the Diophantine equation $x^4-Dy^2=1$, Acta Math. Sinica 28 (1985), no. 5, 681–683 (Chinese). MR 842749
Bibliographic Information
- Michael A. Bennett
- Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
- Address at time of publication: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- MR Author ID: 339361
- Email: mabennet@ias.edu, mabennet@math.uiuc.edu
- Gary Walsh
- Affiliation: Department of Mathematics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
- Email: gwalsh@mathstat.uottawa.ca
- Received by editor(s): February 17, 1998
- Published electronically: May 6, 1999
- Additional Notes: The first author was supported in part by NSF Grants DMS-9700837 and DMS-9304580 and through the David and Lucile Packard Foundation.
The second author was supported in part by NSERC Grant 2560150. - Communicated by: David E. Rohrlich
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 3481-3491
- MSC (1991): Primary 11D25, 11J86
- DOI: https://doi.org/10.1090/S0002-9939-99-05041-8
- MathSciNet review: 1625772