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FOCAL LOCI OF FAMILIES
AND THE GENUS OF CURVES ON SURFACES

LUCA CHIANTINI AND ANGELO FELICE LOPEZ

(Communicated by Ron Donagi)

Abstract. In this article we apply the classical method of focal loci of families
to give a lower bound for the genus of curves lying on general surfaces. First
we translate and reprove Xu’s result that any curve C on a general surface
in P3 of degree d ≥ 5 has geometric genus g > 1 + degC(d − 5)/2. Then we
prove a similar lower bound for the curves lying on a general surface in a given
component of the Noether-Lefschetz locus in P3 and on a general projectively
Cohen-Macaulay surface in P4.

1. Introduction

The theory of singular curves lying in a projective varietyX has been extensively
studied from the beginnings of Algebraic Geometry; however, even when X is a
smooth surface, many basic questions still remain open. Recently, the interest about
these arguments grew, essentially for two reasons: on the one hand, the theory
of strings of nuclear physicists deals with the enumerative geometry of rational
curves contained in some projective threefolds; on the other, the study of singular
curves is naturally related with the hyperbolic geometry of complex projective
varieties. Let us recall briefly this last setting. A compact complex manifold M is
said to be hyperbolic (in the sense of Kobayashi [K] or Brody [B]) if there are no
nonconstant entire holomorphic maps f : C →M . An intriguing question that lies
in the intersection between differential and algebraic geometry is to characterize
which projective algebraic varieties X over the complex field are hyperbolic. One
necessary condition, in the above case, is that there are no nonconstant holomorphic
maps f : A → X from an abelian variety A to X and it has been conjectured by
Kobayashi [K] and Lang [La] that this condition is in fact sufficient.

An approach to the themes around this conjecture was given by Demailly in his
Santa Cruz notes [D], in which he proposed an intermediate step:

Definition (1.1). A smooth projective variety X is said to be algebraically hyper-
bolic if there exists a real number ε > 0 such that every algebraic curve C ⊂ X of
geometric genus g and degree d satisfies 2g − 2 ≥ εd.

Demailly proved that hyperbolic implies algebraically hyperbolic and that the
latter does not allow the existence of nonconstant holomorphic maps from an
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abelian variety to X . Then, in view of Kobayashi-Lang’s conjecture, it becomes
relevant to check which projective varieties are algebraically hyperbolic. Already
in the case of surfaces a complete answer appears far from reach. In P3, the works
of Brody, Green [BG], Nadel [N] and El Goul [EG] showed that for all integers
d ≥ 14 there exist hyperbolic surfaces of degree d. Very recently Demailly and El
Goul [DEG] proved that a general surface (in the countable Zariski topology) in P3

of degree at least 42 is hyperbolic. On the other hand, Clemens [Cl] proved that
a general surface of degree at least 6 in P3 is algebraically hyperbolic. Clemens’
argument was extended by Ein ([E1], [E2]) to the case of complete intersections in
higher dimensional varieties and recently improved and simplified by Voisin in [V]
(see also [CLR] for a very recent improvement). In 1994, Xu [X1] provided a more
precise lower bound for the geometric genus of curves in any linear system over a
general surface in P3, which is in fact sharp in some cases. His proof is based on a
clever investigation of the equations defining singular curves on surfaces moving in
P3; however it is involved in explicit hard computations with local coordinates. It
was when trying to understand Xu’s method from a global point of view that we
realized its connection with the focal locus of a family of curves. In general, the the-
ory of “focal loci” for a family of varieties was classically developed by C.Segre [S]
and recently rephrased in a modern language by Ciliberto and Sernesi [CS] (see also
[CC]). These loci play an important role in differential projective geometry, and
hence they have a quite natural involvement in the study of algebraic hyperbolicity
of projective varieties.

Our first task, in the present article, has been to translate Xu’s local analysis with
a global property of the focal locus of a family of curves (Proposition (2.4)). This
property turns out to be simple and powerful enough to get interesting applications.

In the case of general surfaces in P3, we give a short proof of one of the main
theorems of Xu [X1, Theorem 2.1], only by means of focal loci.

Theorem (1.2). On a general surface S of degree d ≥ 5 in P3, there are no reduced
irreducible curves C of geometric genus g ≤ 1 + degC(d − 5)/2. In particular, for
d ≥ 6, S is algebraically hyperbolic.

An interesting consequence is that we reobtain a proof of Harris’ conjecture: a
general quintic surface in P3 does not contain rational or elliptic curves (see also
Remark (3.2)). It should be noted that, from the articles of Ein [E1], [E2] and
Voisin [V], it follows that on a general surface of degree d ≥ 5 there are no reduced
irreducible curves with g ≤ degC(d− 5)/2.

The next possibility for surfaces in P3, which was also a starting point of our
work, is to analyze the question of algebraic hyperbolicity for surfaces that are
general in a given component of the Noether-Lefschetz locus, that is, the locus of
smooth surfaces of degree d ≥ 4 in P3 whose Picard group is not generated by the
hyperplane bundle. The problem was partly motivated by the simple observation
that a surface of general type which is not algebraically hyperbolic and does not
contain rational or elliptic curves would be a counterexample to Kobayashi-Lang’s
conjecture. The simplest examples of surfaces in a component of the Noether-
Lefschetz locus are those containing a fixed curve D ⊂ P3. The method of focal
loci proved useful also in this case:

Theorem (1.3). Let D be an integral curve in P3 and let s, d be two integers such
that d ≥ s+ 4 and

(i) there exists a surface Y ⊂ P3 of degree s containing D,
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(ii) the general element of the linear system |OY (dH −D)| is smooth and irre-
ducible.

Let S be a general surface of degree d in P3, containing D. Then S contains no
reduced irreducible curves C 6= D of geometric genus g < 1 + degC(d − s − 5)/2.
In particular, for d ≥ s+ 6 and g(D) ≥ 2, S is algebraically hyperbolic.

This result should be compared with what can be obtained adapting the methods
of [V], namely that on S there are no reduced irreducible curves with g < 1 +
degC(d − α − 4)/2, where α is a degree in which the homogeneous ideal of D is
generated [V1].

Finally we give another application to the case of projectively Cohen-Macaulay
surfaces in P4, where the methods of Ein and Voisin do not seem to apply easily,
because they are not complete intersections. To establish the notation, let S ⊂ P4

be a projectively Cohen-Macaulay surface and consider the minimal free resolution
of its ideal sheaf IS

0 →
m⊕
i=1

OP4(−d2i)
φ−→

m+1⊕
j=1

OP4(−d1j)
ψ−→IS → 0

where we assume d2i ≥ d2,i+1, d1j ≥ d1,j+1. Now set uij = d2i − d1j ; note that the
order chosen implies ui+1,j ≤ uij ≤ ui,j+1. We have

Theorem (1.4). On a general projectively Cohen-Macaulay surface S in P4 such
that um,m+1 ≥ 6 there are no reduced irreducible curves C of geometric genus
g < 1 + degC(um,m+1 − 7)/2. In particular, for um,m+1 ≥ 8, S is algebraically
hyperbolic.

2. Some basic facts about focal sets

In this section we recall the construction of the focal set of a projective family
of curves. We refer to [CC] for more details.

Let X → B be a family of hypersurfaces Xt ⊂ Pn, t ∈ B, and let C → B be
a family of curves of geometric genus g such that Ct ⊂ Xt, for every t ∈ B. Let
π : C → Pn be the corresponding map and denote by z(C) the dimension of the
image of π. Without loss of generality we can assume, by shrinking B, the existence
of a global desingularization

σ : C̃ → C
↘ ↙
B

of all the fibers of C. Let 0 ∈ B be a general point and denote by X0, C0, C̃0 and
σ0 : C̃0 → C0 the corresponding fibers. We have the basic

Proposition (2.1). Let s : C̃ → C ↪→ B × Pn be the composition, N the cokernel
of the induced map TC̃ → s∗(TB×Pn) (the normal sheaf to s) and let N0 be the
restriction of N to the fiber C̃0. Then

(a) N0 is the normal bundle to the composition s0 = π ◦ σ0, i.e. the cokernel of
the map T

C̃0
→ s∗0(TPn);

(b) the family C → B induces a characteristic map

χ0 : TB ⊗OC̃0
→ N0

where TB is the tangent space to B at 0; its rank at a general point of C̃0 is z(C)−1.
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Proof. The first fact is Proposition 1.4 of [CC]; the second fact is shown in [CC,
p.98].

Definition (2.2). The global focal set F0 of the family C → B is the locus defined
on C̃0 by

∧n−1 χ0 = 0.

The global focal set F0 has the following simple but useful properties.

Proposition (2.3). Let P ∈ C̃0 be a point such that Q = σ0(P ) is a smooth point
of C0 and X0. We have

(i) F0 = C̃0 if and only if z(C) < n;
(ii) if z(C) = n and Q is a fixed point of X , then P ∈ F0.

Proof. (i) is a consequence of Proposition (2.1)(b). To see (ii) observe that s fac-
torizes via the inclusion X ↪→ B × Pn; hence we have a map

N0 → σ∗0(NX0/Pn ⊗OC0)

whose restriction to Q is surjective, since Q is a smooth point of X0. Now, if Q is
a fixed point of X , then χ0(TB ⊗OC̃0,P

) is in the rank n− 2 kernel of the previous
map.

The following result is the interpretation of Xu’s method ([X1], [X2], [X3]) in
terms of focal sets.

Proposition (2.4). Let Fs be the subset of the global focal set F0, supported at the
points P ∈ C̃0 which map to the regular locus of C0 and assume z(C) = n. Then

degFs ≤ 2g − 2 + (n+ 1) degC0.

Proof. The first Chern class of N0 is 2g − 2 + (n + 1)degC0, by construction. In
general, N0 may have some torsion subsheaf T , but in any case T is supported at
the cuspidal points of C̃0, which map to the singular locus of C0 (see [CC, 1.6]).
Let N ′

0 = N0/T and consider the composition χ′0 : TB ⊗OC̃0
→ N0 → N ′

0. By our
assumptions on z(C) this map is generically surjective and Fs is contained in the
locus where χ′0 drops rank. It follows that degFs ≤ c1(N ′

0) ≤ c1(N0).

3. The genus of effective divisors via the focal set

The strategy that we will employ to show that on a general member of a given
family of surfaces in Pn, S → B, there are no curves of “low” geometric genus is the
following. Supposing there is a family C → B of curves on each surface, first find
a collection of subfamilies B(U) ⊂ B such that their tangent spaces span TB and
that there is a family of hypersurfaces X (U) containing the curves and with many
fixed points. Then find one such U so that the corresponding family of curves C(U)
satisfies z(C(U)) = n and apply Propositions (2.3) and (2.4) to get a lower bound
for the geometric genus.

We first record an elementary lemma on vector spaces that we will use in all the
proofs.

Lemma (3.1). Let f : V →W be a linear map of finite dimensional vector spaces
and suppose dim f(V ) > z. Let {Vi} be a family of subspaces of V , such that V is
generated by

⋃
Vi and assume that for any pair of subspaces Vi, Vj in the family, we

can find a chain of subspaces of the family Vi = Vi1 , Vi2 , . . . , Vik = Vj such that for
all h, dim f(Vih ∩ Vih+1 ) ≥ z. Then there is a Vi in the family with dim f(Vi) > z.
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Proof. Assuming that dimf(Vi) ≤ z for all i we will prove that, for any Vi, f(Vi) gen-
erates f(V ), a contradiction. Indeed, for any j, take a chain Vi = Vi1 , Vi2 , . . . , Vik =
Vj which links Vi and Vj . We have dimf(Vi) ≤ z ≤ dimf(Vi∩Vi2 ) ≤ dimf(Vi2) ≤ z
and also z ≤ dimf(Vi ∩ Vi2) ≤ dimf(Vi) ≤ z; hence f(Vi) = f(Vi ∩ Vi2 ) = f(Vi2).
Repeating the argument, we finally get f(Vi) = f(Vj). Since

⋃
f(Vi) generate

f(V ), we are done.

Our first application will be to give a new proof of Xu’s theorem ([X1, Theorem
2.1]).

Proof of Theorem (1.2). Take a family S → B of surfaces of degree d in P3, with
B dense in PH0(OP3(d)). Let C → B be a family of reduced irreducible curves,
such that for all t ∈ B, the fiber Ct ⊂ St has geometric genus g and let C̃ → B be
a global desingularization of the fibers. Fix 0 ∈ B general and suppose, without
loss of generality, that the automorphisms of P3 act on B and moreover that S0

does not contain any line. The action of PGL(3) on B shows that the image of C
in P3 cannot be contained in any fixed surface; hence z(C) = 3 and therefore the
characteristic map of C̃ has rank 2 at a general point of C̃ by Proposition (2.1).
For all surfaces U of degree d − 1, transversal to C0, and for P ∈ C0 − U general,
let B(U) be the subvariety of B parametrizing surfaces which contain U ∩ S0 and
let B(U, P ) be the subvariety of B(U) parametrizing surfaces passing through P .
Denote by T (U) and T (U, P ) their tangent spaces at 0 and by C̃(U), C̃(U, P ) the
corresponding families of curves. Note that dimB(U) ≥ 3, dimB(U, P ) ≥ 2. We
claim that the characteristic map of C̃(U, P ) has rank 2 for U, P general. To prove
this, let U,U ′ be two monomials of degree d − 1 which differ only in degree one,
that is, M = l.c.m.(U,U ′) has degree d; then B(U) ∩ B(U ′) contains the pencil
S0 +λM , which defines a non-trivial deformation of C0, since C0 is not in the base
locus. It follows that any pair T (U), T (U ′), with U,U ′ monomials, can be linked
by a chain of subspaces of this type, in such a way that the intersection of two
consecutive elements of the chain has non-trivial image under the characteristic
map. Since TB is generated by the tangent vectors to the varieties B(U), with U

monomial, and the characteristic map of C̃ has rank 2 at a general point, we get
by Lemma (3.1) that the characteristic map of C̃(U) has also rank 2 for some U .
Similarly, fixing a general U , for any smooth points P, P ′ ∈ C0−U , the intersection
B(U, P ) ∩ B(U, P ′) contains a pencil S0 + λM with M = U ·(some plane through
PP ′), which induces a non-trivial deformation of C0 (as C0 is not a line). Hence
applying Lemma (3.1) again one gets the claim.

Now look at the focal locus of C̃(U, P ): it contains the inverse image of C0 ∩ U
and P , and therefore, by Propositions (2.3) and (2.4), we have

2g − 2 ≥ (d− 1)degC0 + 1− 4degC0,

which is the required inequality on g, as degC0 is a multiple of d by the Noether-
Lefschetz theorem.

Remark (3.2). Note that the above proof makes use of the Noether-Lefschetz the-
orem only at the very last line, and in fact only for d even, degC odd. In particular
our proof of Harris’ conjecture is independent of the Noether-Lefschetz theorem,
while Xu’s proof makes essential use of the fact that on a general surface every
curve is a complete intersection. However Xu gets g ≥ 3 for a curve on a general
quintic.
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We now consider a fixed integral curve D ⊂ P3 and the family of surfaces of
degree d ≥ s+ 4 containing it, where s and d are as in the hypotheses (i) and (ii)
of Theorem (1.3).

Proof of Theorem (1.3). Act with PGL(3) on D and let D be the corresponding
family of curves. Let S → B be the family of surfaces of degree d in P3, containing
some curve in D and let, as above, C → B be a family of reduced irreducible
curves, such that, for all t ∈ B, the fiber Ct ⊂ St has geometric genus g; let
C̃ → B be a global desingularization of the fibers. Fix 0 ∈ B general, call S0 and
C0 the corresponding fibers and suppose again that PGL(3) acts on B. Let Y0 be
the surface as in (i) containing D0. Suppose first that C0 6⊂ Y0. The action of
PGL(3) gives, as above, z(C) = 3; hence the characteristic map of C̃ has rank 2 by
Proposition (2.1). For all surfaces U of degree d−s−1 transversal to D0 and C0, let
B(U) be the subvariety of B parametrizing surfaces which contain U ∩S0; let T (U)
be its tangent space at 0 and C̃(U) the corresponding family of curves. Note that
dimB(U) ≥ 2, for D0 is contained in many surfaces of degree s+1. As in the proof
of Theorem (1.2) let U,U ′ be two monomials of degree d−s−1 which differ only in
degree one, that is, M = l.c.m.(U,U ′) has degree d−s. Then B(U)∩B(U ′) contains
the pencil S0+λY0M , which defines a non-trivial deformation of C0, since C0 is not
in the base locus. Therefore, by Lemma (3.1), we get that the characteristic map
of C̃(U) has rank 2 for U general. Now look at the focal locus of C̃(U): it contains
the inverse image of C0 ∩ U ; hence by Propositions (2.3) and (2.4), we get

2g − 2 ≥ (d− s− 1)degC0 − 4degC0.

On the other hand if C0 ⊂ Y0, then, by (ii), C0 is the smooth complete intersection
of S0 and Y0; hence 2g − 2 = (d + s − 4)degC0. We have then proved that for
a general curve D0 ∈ D, a general surface of degree d containing D0 satisfies the
assertion of the theorem. Since all the curves in D are projectively isomorphic to
D, the theorem follows.

Remark (3.3). The bound of Theorem (1.3) can be improved in some cases by fixing
some base points in the family B(U), as we did in the proof of Theorem (1.2).

Remark (3.4). When D is rational or elliptic, we still have the algebraic hyperbol-
icity of the open surface S −D, for d ≥ s+ 6. More than that, we know that every
non-constant map C → S has image contained in D.

Remark (3.5). The proofs of Theorems (1.2) and (1.3) can be easily extended both
to the case of general complete intersection surfaces S ⊂ Pr and to the case of
general complete intersection surfaces S ⊂ Pr containing a fixed curve D.

Finally we deal with the case of projectively Cohen-Macaulay surfaces S ⊂ P4.
Let us recall some notation from the introduction. We denote by MS = [Aij ] and
[F1, . . . , Fm+1] the matrices of the maps φ and ψ, respectively, appearing in the
resolution of the ideal sheaf of S. As is well known, either Aij is a polynomial of
degree uij if uij ≥ 0 or Aij = 0 if uij < 0 and, by the Hilbert-Burch theorem, we
can assume that Fj is the determinant of the minor obtained by removing the jth
column from MS .

Proof of Theorem (1.4). Take a family S → B of projectively Cohen-Macaulay
surfaces St ⊂ P4, t ∈ B with B dense, and let X → B be the corresponding family
of hypersurfaces Xt ⊂ P4 defined by the minors F1,t of the matrix MSt . Note
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that by [Ch] we can assume that dimSing(Xt) = 0, as uii > 0 by minimality. Let
C → B a family of reduced irreducible curves, such that for all t ∈ B, the fiber Ct has
geometric genus g and is contained in St and let C̃ → B be a global desingularization
of the fibers. Fix 0 ∈ B general and suppose that PGL(4) acts on B. The action
of PGL(4) on B shows that the image of C in P4 cannot be contained in any fixed
proper subvariety; hence z(C) = 4 and the characteristic map of C̃ has rank 3 by
Proposition (2.1). For all hypersurfaces U of degree u = um,m+1 − 2, transversal
to C0 and such that U ∩ C0 ∩ Sing(X0) = ∅, let B1(U) be the subvariety of t ∈ B
parametrizing projectively Cohen-Macaulay surfaces such that the hypersurface Xt

contains U ∩C0. Now let B(U) be an irreducible component of B1(U) containing 0
and the points in B1(U) parametrizing projectively Cohen-Macaulay surfaces whose
matrix is of type A11 . . . A1m UG1

...
...

Am1 . . . Amm UGm

 .
Let T (U) be the tangent space to B(U) at 0 and C̃(U),X (U) the corresponding
families of curves and threefolds. We will prove that the characteristic map of C̃(U)
has rank 3 for U general. To prove this using Lemma (3.1), we will show first that
if U,U ′ are monomials which differ only in degree one, i.e. V = l.c.m.(U,U ′) has
degree u + 1, then the characteristic map on B(U) ∩ B(U ′) has rank at least 2.
In fact by Proposition (2.1) it is enough to show that the corresponding curves
Ct, t ∈ B(U) ∩ B(U ′), fill up a variety Σ ⊂ P4 of dimension at least 3. Suppose
to the contrary dimΣ ≤ 2. As we can assume that V is transversal to C0, it is
necessarily true that dimΣ ∩ V ≤ 1, since C0 ⊂ Σ. What we need follows then by
the claim below.

Claim (3.6). For all monomials U,U ′, V as above and for every variety Σ ⊂ P4

such that dimΣ ≤ 2 and dimΣ ∩ V ≤ 1, there exists t ∈ B(U) ∩ B(U ′) such that
dimSt ∩Σ = 0.

Proof of Claim (3.6). We choose t ∈ B(U) ∩ B(U ′) so that the matrix of St is a
general one of type A11 . . . A1m V H1

...
...

Am1 . . . Amm V Hm


that is, the polynomials Aij and Hi (of degree ui,m+1 − u − 1) are general. Let
T be the projectively Cohen-Macaulay surface defined by the vanishing of the
(m − 1) × (m − 1) minors of the matrix [Aij , 1 ≤ i ≤ m, 2 ≤ j ≤ m] and
F1, Fm+1 the two distinguished generators of the ideal of St. Clearly dimT ∩ Σ =
0, dimFm+1 ∩ Σ = 1 and Fm+1 does not contain any component of V ∩ Σ, as the
entries Aij are general. Now suppose that St ∩Σ has a component D of dimension
at least one and let x ∈ D be a general point. Then x 6∈ V . As D 6⊂ T , there is an
(m− 1)× (m− 1) minor of the matrix of T not vanishing on x; hence x 6∈ F1, by a
general choice of the Hi.

This contradiction proves Claim (3.6).
To finish the proof of the theorem just proceed in analogy with the previous

proofs. Since TB is generated by the tangent vectors to the varieties B(U), with
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U monomial and the characteristic map of C̃ has rank 3 at a general point, we get
by Lemma (3.1) that the characteristic map of C̃(U) has also rank 3. Now look at
the focal locus of C̃(U): it contains the inverse image of C0 ∩ U , as they are fixed
points of the family of hypersurfaces X (U); hence by Propositions (2.3) and (2.4),

2g − 2 ≥ udegC0 − 5degC0.

Remark (3.7). It is clear that if we drop the hypothesis um,m+1 ≥ 8 in Theo-
rem (1.4) there can be rational or elliptic curves on a general projectively Cohen-
Macaulay surface S in P4. For example the Castelnuovo surface contains elliptic
curves.

Remark (3.8). The Picard group of the surfaces considered in our theorems is, in
many cases, particularly simple. In the case of Theorem (1.2) it is just generated
by the hyperplane bundle, by the Noether-Lefschetz theorem. In the hypothesis of
Theorem (1.3) it follows by [Lo, Corollary II.3.8] that S has Picard group generated
by the hyperplane bundle H and by the line bundle associated to D. For the general
projectively Cohen-Macaulay surface S ⊂ P4 the situation is quite different. If
uij > 0 for every i, j, the Picard group is generated by the hyperplane bundle H
and by the canonical bundle of S [Lo, Theorem III.4.2], while in general it can have
large rank. Despite the simplicity of the Picard groups in many cases, there does
not seem to be a way to make use of it, as the theorems are concerned with the
possible singularities of the curves. As a matter of fact our proofs are independent
of the knowledge on the Picard group.
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