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Abstract. The Cauchy problem for an ordinary differential equation coupled
with a hysteresis operator is studied. Under physically reasonable assump-
tions on the forcing term, uniqueness of solutions is shown without assuming
Lipschitz continuity of the hysteresis curves. The result is true for any kind of
hysteresis operators with monotone curves of motion.

1. Introduction

In this paper we consider the question of uniqueness of solutions for the Cauchy
problem for an ordinary differential equation coupled with a hysteresis operator
without assuming its Lipschitz continuity. By “solution” we mean a continuous,
differentiable function, which satisfies (2) and satisfies (1) on some right neighbor-
hood of t = 0. The equation we consider is

du

dt
+ F(u) = f in (0, T ),(1)

u(0) = u0.(2)

Here F represents a hysteresis operator: C([0, T ]) → C([0, T ]) and we assume f
continuous on [0, T ]. The existence of a solution of (1)–(2) is well known; see [5].
As pointed out by Visintin (see [4], p.324), uniqueness was an open problem for F
not Lipschitz continuous, while it was known that Lipschitz continuity guarantees
uniqueness. Using simple techniques from the theory of differential equations, we
show that under physically reasonable assumptions on f we do have uniqueness
even in the non-Lipschitz case. This is done first for f = 0, then extended to the
more general case. As was shown recently by V.Chernorutskii and D.Rachinskii
in [1], additional assumptions are needed in the non-Lipschitz case. In [1] they
constructed a specific continuous right hand side, oscillatory in every neighborhood
of 0, for which there is nonuniqueness.

2. Preliminaries

In this section we state a uniqueness theorem for the Cauchy problem without
the hysteresis operator, which will be useful in the sequel. The result is classical, a
detailed proof is given in [2], Section III.6.
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Theorem 1. Let U(t, u) be a continuous real-valued function for t0 ≤ t ≤ t0 + a,
|u− u0| ≤ b, which is nonincreasing with respect to u (for fixed t). Then the initial
value problem

du

dt
= U(t, u),(3)

u(t0) = u0(4)

has at most one solution on any interval [t0, t0 + ε], ε > 0.

3. Hysteresis operators

The term hysteresis means to lag behind. Hysteresis operators were first system-
atically studied by M.A.Krasnosel’skii and A.V.Pokrovskii; see their monograph,
[3].

When speaking of hysteresis, one usually refers to a relation between two scalar
time-dependent quantities u(t) and w(t) that cannot be expressed in terms of a
single valued function, but takes the form of loops, like the one depicted in Figure
1. When the pair (u, w) is on the curve γr and u increases, then the pair (u, w)
moves along the curve γr. If the pair (u, w) is on the curve γl and u decreases, then
the pair (u, w) moves on the curve γl. Moreover, when u inverts its movement, the
pair (u, w) moves into the interior of the region bounded by the curves γl and γr,
this behavior must be described by the specific model.

In this section we will restrict ourselves to the definition of the generalized play
operator, as used by Visintin. For more details as well as for definitions of other
hysteresis operators, see [4] or [3].

Let

γl, γr : R → R be continuous nondecreasing functions with γr ≤ γl.(5)

Now, given w0 ∈ R, we construct the hysteresis operator E(·, w0) as follows. Let
u be any continuous, piecewise linear function on [0, T ] such that u is linear on

Figure 1. A generalized play with boundary curves γl and γr.
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[ti−1, ti] for i = 1, 2, ..., N . We then define w := E(u, w0) : [0, T ] → R by

w(t) :=

{
min{γl(u(0)), max{γr(u(0)), w0}} if t = 0,

min{γl(u(t)), max{γr(u(t)), w(ti−1)}} if t ∈ (ti−1, ti], i = 1, 2, ..., N.

Note that w(0) = w0 only if γr(u(0)) ≤ w0 ≤ γl(u(0)).
As proved in Visintin [4], Sect.III.2, for any continuous piecewise linear functions

u1, u2 on [0, T ], with the notation εk := E(uk, w0k), k = 1, 2, we have the following
inequality:

max
[t1,t2]

|ε1 − ε2| ≤ max
{
|ε1(t1)− ε2(t1)|, mM

(
max
[t1,t2]

|u1 − u2|
)}

(6)

∀[t1, t2] ⊂ [0, T ],

where for any continuous function f : R → R and any constant M > 0, |f |M (h)
denotes its local modulus of continuity:

|f |M (h) :=sup{|f(y1)− f(y2)|: y1, y2∈ [−M, M ], |y1 − y2| ≤ h} ∀h > 0,(7)

mM (h) := max{|γl|M (h), |γr|M (h)} ∀h, M > 0,(8)

and

M := max{|uk(t)| : t ∈ [0, T ], k = 1, 2}.(9)

Hence E(·, w0) has a unique continuous extension, denoted by E(·, w0) again, to
an operator

E : C([0, T ])× R → C([0, T ]).(10)

This operator is called a generalized play; see Figure 1.
The inequality (6) holds also for this extended operator, which is then uniformly

continuous on bounded sets. If γl, γr are Lipschitz continuous, then E is also
Lipschitz continuous.

The generalized play operator also satisfies the piecewise monotone property, a
property very often satisfied by hysteresis operators, i.e.

∀(u, w0) ∈ Dom(F), ∀[t1, t2] ⊂ [0, T ],
if u is nondecreasing (resp. nonincreasing) in [t1, t2],
then so is F(u, w0).

(11)

4. Main result

Using the theorem from Section 2, we prove a uniqueness theorem for (1)–(2),
when F is a generalized play operator.

Theorem 2. Suppose that F(u, w0) is a generalized play operator with hysteresis
boundary curves γl and γr, which are strictly increasing, and f(t) ≡ 0. Then the
solution of the Cauchy problem (1)–(2) is unique.

Proof. From (1) we have

du

dt
= −F(u),

thus du
dt is continuous if u solves (1).
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Suppose that w(0) = 0. Then
du

dt
(0) = 0

and therefore all the points

S = {(u, w); w = 0, a ≤ u ≤ b, where γl(a) = 0 and γr(b) = 0}
are equilibria. The solution of (1)–(2) with w(0) = 0 is unique, u(t) ≡ u0. This
can be proved as follows: Assume that for some t1 > 0 we have w(t1) > 0 and
put t0 := max{t ∈ [0, t1], w(t) = 0}. Then w(t) > 0 on (t0, t1], hence in [t0, t1]
the function u is decreasing, therefore w is nonincreasing, which is a contradiction.
Similarly for w(t1) < 0.

Suppose now w(0) > 0. Then at (u0, w(0))
du

dt
(0) = −w(0) < 0,(12)

thus u is decreasing on a right neighborhood of t = 0. We have three possibilities.
Either (u0, w(0)) lies inside the hysteresis region or on γr or on γl. In the first two
cases F stays constant on some interval [0, t1); from (12) we have u = −w(0)t + c0

and since u(0) = u0, u = −w(0)t+u0 for t ∈ [0, t1], and u is decreasing until (u, w)
hits the hysteresis boundary γl. The second possibility is that (u0, w(0)) lies on γl.
Here we again have from (12) that u is decreasing and (u, w) moves on the curve
γl. Therefore u must satisfy the equation

du

dt
+ γl(u) = 0,

u(0) = u0

which by Theorem 1 has a unique solution and is approaching the equilibrium (a, 0)
as t →∞. The case w(0) < 0 can be handled analogously, using the uniqueness of
solutions to the problem:

du

dt
+ γr(u) = 0,

u(0) = u0.

Remark 1. The assumption about strict monotonicity of γl, γr in the statement of
Theorem 2 was used only for simplicity and can be easily omitted.

Remark 2. From the above analysis we are actually able to prove more: Except in
the trivial case when w(0) = 0, the set of two solutions {u1(t) ≡ a, w1 ≡ 0; u2(t) ≡
b, w2 ≡ 0} is an attractor; solutions of (1)–(2) are stable and they converge to this
set as t →∞, depending on the initial value w(0).

Remark 3. Using the same methods as above we can prove uniqueness for (1)–(2)
for F a generalized Prandtl-Ishlinskii operator of play type or any other hysteresis
operator, e.g., Preisach, with monotone curves of motion. In this case all the
points (u0, 0), a ≤ u0 ≤ b, are equilibria, where γl(a) = γr(b) = 0, and γl, γr are
the hysteresis boundary curves.

Theorem 3. Suppose there exists an ε > 0 such that f(t) > w(0) (or f(t) < w(0))
on [0, ε). Then there exists an ε̃ > 0, such that there exists at most one solution of
(1)–(2) on [0, ε̃ ).
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Figure 2. The two solutions in the proof of Theorem 3.

Proof. It follows from the assumptions that there exists an ε̃ > 0 such that f(t) >
w(t) (or f(t) < w(t)) on [0, ε̃ ). This means that du

dt does not change sign on [0, ε̃ ).
The proof proceeds by contradiction. Let there exist two different solutions on

[0, ε̃ ). We can assume without loss of generality that w(0) = 0, u0 = 0 and that
γr(u) is such that γr(0) = 0 and that the point (0, 0) is a point where the curve
γr(u) is non-Lipschitz. For 0 ≤ t < ε̃, the motions (ui(t), wi(t)), i = 1, 2, must lie
respectively on one of the curves w = γr(u) or w = 0; see Figure 2. This means
that each ui(t) must satisfy either

du

dt
= −γr(u) + f(t)(13)

or

du

dt
= −w0 + f(t) = f(t)(14)

for 0 ≤ t < ε̃. But each of these has a unique solution by Theorem 1, so we can
assume u1 solves (13) and u2 solves (14).

Look carefully at what this means :

for u1 :
du1

dt
= −γr(u1) + f(t) ≥ 0, i.e. f(t) ≥ γr(u1) > 0,

for u2 :
du2

dt
= f(t) ≤ 0, i.e. f(t) ≤ 0,

a contradiction.

Remark 4. As the above proof suggests, we can actually assume less than f(t) has
constant sign on [0, ε). It suffices to have assumptions which will guarantee that the
solution pair (u(t), w(t)) will move either on γr(u) or inside the hysteresis region,
on the line w = 0 (see Figure 3). A little thought shows that we need to exclude
the only other alternative to the motions depicted in Figure 2: in every interval
(0, ε) the motion leaves γr(u) and returns to it via a horizontal segment; see Figure
3.

In this case there would exist a sequence tn → 0, with Qn = (u(t2n), w(t2n)) a
minimum of u(t) on γr and Pn = (u(t2n+1), w(t2n+1)) a maximum of u(t) on the
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Figure 3. The case when nonuniqueness can occur.

horizontal segment, t2n+1 < t2n. Then we must have

f(t2n+1) = γr(u(t2n)) = f(t2n).(15)

This is basically the case from the paper of V. Chernorutskii and D.Rachinskii, [1],
when nonuniqueness occurs. This can be excluded, for example, by assuming that
f ′ exists on [0, ε), is continuous at t = 0 and f ′(0) 6= 0.
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