Morse indices and exact multiplicity of solutions to semilinear elliptic problems
HTML articles powered by AMS MathViewer
- by Junping Shi and Junping Wang
- Proc. Amer. Math. Soc. 127 (1999), 3685-3695
- DOI: https://doi.org/10.1090/S0002-9939-99-05542-2
- Published electronically: August 5, 1999
- PDF | Request permission
Abstract:
We obtain precise global bifurcation diagrams for both one-sign and sign-changing solutions of a semilinear elliptic equation, for the nonlinearity being asymptotically linear. Our method combines the bifurcation approach and spectral analysis.References
- Herbert Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), no. 4, 620–709. MR 415432, DOI 10.1137/1018114
- Herbert Amann, Nonlinear eigenvalue problems having precisely two solutions, Math. Z. 150 (1976), no. 1, 27–37. MR 412599, DOI 10.1007/BF01213882
- Antonio Ambrosetti and Giovanni Mancini, Sharp nonuniqueness results for some nonlinear problems, Nonlinear Anal. 3 (1979), no. 5, 635–645. MR 541874, DOI 10.1016/0362-546X(79)90092-0
- Alfonso Castro, Sudhasree Gadam, and R. Shivaji, Branches of radial solutions for semipositone problems, J. Differential Equations 120 (1995), no. 1, 30–45. MR 1339668, DOI 10.1006/jdeq.1995.1104
- Alfonso Castro and A. C. Lazer, Critical point theory and the number of solutions of a nonlinear Dirichlet problem, Ann. Mat. Pura Appl. (4) 120 (1979), 113–137. MR 551063, DOI 10.1007/BF02411940
- N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal. 4 (1974/75), 17–37. MR 440205, DOI 10.1080/00036817408839081
- Castro, Alfonso; Ouyang, Tiancheng; Wang, Junping, Bifurcation from a simple eigenvalue in a superlinear boundary value problem (preprint) (1997).
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Analysis 8 (1971), 321–340. MR 0288640, DOI 10.1016/0022-1236(71)90015-2
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161–180. MR 341212, DOI 10.1007/BF00282325
- Djairo G. de Figueiredo and Jean-Pierre Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Differential Equations 17 (1992), no. 1-2, 339–346. MR 1151266, DOI 10.1080/03605309208820844
- Jesús Hernández, Qualitative methods for nonlinear diffusion equations, Nonlinear diffusion problems (Montecatini Terme, 1985) Lecture Notes in Math., vol. 1224, Springer, Berlin, 1986, pp. 47–118. MR 877987, DOI 10.1007/BFb0072688
- Tiancheng Ouyang, On the positive solutions of semilinear equations $\Delta u+\lambda u-hu^p=0$ on the compact manifolds, Trans. Amer. Math. Soc. 331 (1992), no. 2, 503–527. MR 1055810, DOI 10.1090/S0002-9947-1992-1055810-7
- Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487–513. MR 0301587, DOI 10.1016/0022-1236(71)90030-9
- Paul H. Rabinowitz, On bifurcation from infinity, J. Differential Equations 14 (1973), 462–475. MR 328705, DOI 10.1016/0022-0396(73)90061-2
Bibliographic Information
- Junping Shi
- Affiliation: Department of Mathematics, Tulane University, New Orleans, Louisiana 70118
- MR Author ID: 616436
- ORCID: 0000-0003-2521-9378
- Email: shij@math.tulane.edu
- Junping Wang
- Affiliation: Department of Mathematics, Brigham Young University, Provo, Utah 84602-6539
- MR Author ID: 216677
- Email: junw@math.byu.edu
- Received by editor(s): February 28, 1998
- Published electronically: August 5, 1999
- Communicated by: David S. Tartakoff
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 3685-3695
- MSC (1991): Primary 35J25, 35B32; Secondary 35J60, 35P30
- DOI: https://doi.org/10.1090/S0002-9939-99-05542-2
- MathSciNet review: 1694880