Rademacher and Gaussian averages and Rademacher cotype of operators between Banach spaces
HTML articles powered by AMS MathViewer
- by Aicke Hinrichs
- Proc. Amer. Math. Soc. 128 (2000), 203-213
- DOI: https://doi.org/10.1090/S0002-9939-99-05012-1
- Published electronically: June 21, 1999
- PDF | Request permission
Abstract:
A basic result of B. Maurey and G. Pisier states that Gaussian and Rademacher averages in a Banach space $X$ are equivalent if and only if $X$ has finite cotype. We complement this for linear bounded operators between Banach spaces. For $T\in {{\mathcal L}}(X,Y)$, let $\varrho (T|{\mathcal G}_n,{\mathcal R}_n)$ be the least $c$ such that \[ \left ( {\mathbf E} \| \sum _{k=1}^n Tx_k g_k\|^2 \right )^{1/2} \le c \left ( {\mathbf E} \| \sum _{k=1}^n x_k r_k\|^2 \right )^{1/2}, \] where ${\mathcal G}_n=(g_1,\ldots ,g_n)$ and ${\mathcal R}_n=(r_1,\ldots ,r_n)$ are systems of $n$ independent standard Gaussian and Rademacher variables, respectively. Let $\varrho (T|{\mathcal I}_n,{\mathcal R}_n)$ be the Rademacher cotype 2 norm of $T$ computed with $n$ vectors. We prove inequalities showing that the asymptotic behaviour of the sequence $\varrho (T|{\mathcal G}_n,{\mathcal R}_n)$ is almost determined by the asymptotic behaviour of the sequence $\varrho (T|{\mathcal I}_n,{\mathcal R}_n)$. In particular, we get \[ \varrho (T|{\mathcal G}_n,{\mathcal R}_n) = o(\sqrt {1+\log n}) \mbox {if and only if} \varrho (T|{\mathcal I}_n,{\mathcal R}_n) = o(\sqrt {n}).\]References
- Aicke Hinrichs, On the type constants with respect to systems of characters of a compact abelian group, Studia Math. 118 (1996), no. 3, 231–243. MR 1388030, DOI 10.4064/sm-118-3-231-243
- S. Kwapień, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972), 583–595. MR 341039, DOI 10.4064/sm-44-6-583-595
- Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015, DOI 10.1007/978-3-642-20212-4
- Bernard Maurey and Gilles Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45–90 (French). MR 443015, DOI 10.4064/sm-58-1-45-90
- A. Pietsch and J. Wenzel, Orthonormal systems and Banach space geometry, Cambridge Univ. Press, 1998.
- Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774
Bibliographic Information
- Aicke Hinrichs
- Affiliation: Mathematical Institute, Friedrich-Schiller-University, D-07743 Jena, Germany
- Email: nah@rz.uni-jena.de
- Received by editor(s): June 5, 1997
- Received by editor(s) in revised form: March 18, 1998
- Published electronically: June 21, 1999
- Additional Notes: The author is supported by DFG grant PI 322/1-1. The content of this paper is part of the author’s PhD-thesis written under the supervision of A. Pietsch.
- Communicated by: Dale Alspach
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 203-213
- MSC (1991): Primary 47D50, 46B07
- DOI: https://doi.org/10.1090/S0002-9939-99-05012-1
- MathSciNet review: 1621932