Tunnel numbers of small knots do not go down under connected sum
HTML articles powered by AMS MathViewer
- by Kanji Morimoto and Jennifer Schultens
- Proc. Amer. Math. Soc. 128 (2000), 269-278
- DOI: https://doi.org/10.1090/S0002-9939-99-05160-6
- Published electronically: September 9, 1999
- PDF | Request permission
Abstract:
Let $K_1$ and $K_2$ be two knots in $S^3$ and $t(K_1)$, $t(K_2)$ the tunnel numbers of them. In this paper, we show that if both $K_1$ and $K_2$ are small, then $t(K_1 \# K_2) \ge t(K_1) + t(K_2)$. Moreover we show that $t(K_1 \# K_2 \# \cdots \# K_n) \ge t(K_1) + t(K_2) + \cdots + t(K_n)$ for any small knots $K_1, K_2, \cdots , K_n$.References
- A. J. Casson and C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), no.ย 3, 275โ283. MR 918537, DOI 10.1016/0166-8641(87)90092-7
- Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen, Dehn surgery on knots, Ann. of Math. (2) 125 (1987), no.ย 2, 237โ300. MR 881270, DOI 10.2307/1971311
- William Jaco, Adding a $2$-handle to a $3$-manifold: an application to property $R$, Proc. Amer. Math. Soc. 92 (1984), no.ย 2, 288โ292. MR 754723, DOI 10.1090/S0002-9939-1984-0754723-6
- Tsuyoshi Kobayashi, A construction of arbitrarily high degeneration of tunnel numbers of knots under connected sum, J. Knot Theory Ramifications 3 (1994), no.ย 2, 179โ186. MR 1279920, DOI 10.1142/S0218216594000137
- M. Lustig and Y. Moriah, Closed incompressible surfaces in complements of wide knots and links, Topology Appl. 92 (1999), no. 1, 1โ13.
- Kanji Morimoto, There are knots whose tunnel numbers go down under connected sum, Proc. Amer. Math. Soc. 123 (1995), no.ย 11, 3527โ3532. MR 1317043, DOI 10.1090/S0002-9939-1995-1317043-4
- โ, Planar surfaces in a handlebody and a theorem of Gordon-Reid, Proc. Knots 96 ed. by S.Suzuki (1997) 123-146.
- Martin Scharlemann, Outermost forks and a theorem of Jaco, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982) Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp.ย 189โ193. MR 813113, DOI 10.1090/conm/044/813113
- โ, Heegaard splittings of compact 3-manifolds, Preprint.
- Martin Scharlemann and Abigail Thompson, Thin position for $3$-manifolds, Geometric topology (Haifa, 1992) Contemp. Math., vol. 164, Amer. Math. Soc., Providence, RI, 1994, pp.ย 231โ238. MR 1282766, DOI 10.1090/conm/164/01596
- Jennifer Schultens, The classification of Heegaard splittings for (compact orientable surface)$\,\times \, S^1$, Proc. London Math. Soc. (3) 67 (1993), no.ย 2, 425โ448. MR 1226608, DOI 10.1112/plms/s3-67.2.425
- โ, Additivity of tunnel number for small knots, Preprint.
Bibliographic Information
- Kanji Morimoto
- Affiliation: Department of Mathematics, Takushoku University Tatemachi, Hachioji, Tokyo 193, Japan
- Email: morimoto@la.takushoku-u.ac.jp
- Jennifer Schultens
- Affiliation: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
- Email: jcs@mathcs.emory.edu
- Received by editor(s): March 1, 1998
- Published electronically: September 9, 1999
- Communicated by: Ronald A. Fintushel
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 269-278
- MSC (1991): Primary 57M25, 57N10
- DOI: https://doi.org/10.1090/S0002-9939-99-05160-6
- MathSciNet review: 1641065