EXTENSIONS OF HEINZ-KATO-FURUTA INEQUALITY

MASATOSHI FUJII AND RITSUO NAKAMOTO

(Communicated by David R. Larson)

ABSTRACT. We give an extension of Lin’s recent improvement of a generalized Schwarz inequality, which is based on the Heinz-Kato-Furuta inequality. As a consequence, we can sharpen the Heinz-Kato-Furuta inequality.

1. Introduction

First of all, we cite a generalized Schwarz inequality which is a base of Lin’s recent paper [9]. For a (bounded linear) operator T acting on a Hilbert space H,

$$|(Tx, y)|^2 \leq (|T|^{2\alpha} x, x)(|T^*|^{2(1-\alpha)} y, y)$$

for all $\alpha \in [0, 1]$ and $x, y \in H$, where $|X|$ is the square root of X^*X for an operator X on H. It implies the Heinz-Kato inequality via the Löwner-Heinz inequality, cf. [3],[10]. On the other hand, Furuta [7] extended the Heinz-Kato inequality, the so-called Heinz-Kato-Furuta inequality. Rephrasing it parallel to (1), we have

$$|(T|^{\alpha+\beta-1} x, y)|^2 \leq (|T|^{2\alpha} x, x)(|T^*|^{2\beta} y, y)$$

for all $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \geq 1$ and $x, y \in H$.

Very recently, Lin [9] sharpened (1) as follows:

Theorem L. Let T be an operator on H and $0 \neq y \in H$. For $z \in H$ satisfying $Tz \neq 0$ and $(Tz, y) = 0$,

$$|(Tx, y)|^2 + \frac{(|T|^{2\alpha} x, z)^2 (|T^*|^{2(1-\alpha)} y, y)}{(|T|^{2\alpha} z, z)} \leq (|T|^{2\alpha} x, x)(|T^*|^{2(1-\alpha)} y, y)$$

for all $\alpha \in [0, 1]$ and $x, y \in H$. The equality holds if and only if $Tz \neq 0$ and $(Tz, y) = 0$, and T^*y are proportional, or equivalently, $Tx - \frac{(|T|^{2\alpha} x, z)}{|T|^{2\alpha} z, z} Tz$ and $|T^*|^{2(1-\alpha)} y$ are proportional.

In this note, we extend Theorem L, which is based on the Heinz-Kato-Furuta inequality (2). Our proof is quite simple, in which we clarify the meaning of the assumption in Theorem L that $Tz \neq 0$ and $(Tz, y) = 0$. As a consequence, we can sharpen the Heinz-Kato-Furuta inequality, and Furuta’s further generalization [6, Theorem 3] of the Heinz-Kato inequality via the Furuta inequality [4]. Incidentally we discuss Bernstein type inequality along the lines of our result.

Received by the editors November 3, 1997 and, in revised form, March 23, 1998.

1991 Mathematics Subject Classification. Primary 47A30, 47A63.

Key words and phrases. Heinz inequality, Heinz-Kato-Furuta inequality, Furuta inequality.

©1999 American Mathematical Society
2. Heinz-Kato-Furuta inequality

For the sake of convenience, we first cite the Heinz-Kato-Furuta inequality [7]:

Let T be an operator on H. If A and B are positive operators on H such that $T^*T \leq A^2$ and $TT^* \leq B^2$, then

$$\|(T|T|^{\alpha+\beta-1}x, y)\| \leq \|A^\alpha x\|\|B^\beta y\|$$

for all $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \geq 1$ and $x, y \in H$.

We here remark that the Heinz-Kato inequality is just the case $\alpha = \beta = 1$ in above and that it corresponds to (1). Thus we have the following extension of Theorem L. Throughout this paper, let $T = U|T|$ be the polar decomposition of an operator T on H.

Theorem 1. Let T be an operator on H and $0 \neq y \in H$. For $z \in H$ satisfying $T^*T|T|^{\alpha+\beta-1}z \neq 0$ and $(T|T|^{\alpha+\beta-1}z, y) = 0$,

$$\|(T|T|^{\alpha+\beta-1}x, y)\|^2 \leq \frac{\|(T|T|^{\alpha+\beta-1}x, z)\|^2 (T|T|^2z, y)}{(T|T|^{2\alpha}z, z)}$$

for all $\alpha, \beta \geq 0$ with $\alpha + \beta \geq 1$ and $x, y \in H$. In the case $\alpha, \beta > 0$, the equality in (5) holds if and only if $|T|^{\alpha+\beta-1}T^*y$ and $|T|^{2\alpha}(x - \frac{(|T|^{2\alpha}x, z)}{(|T|^{2\alpha}z, z)})$ are proportional, or equivalently, $|T|^{2\beta}y$ and $T|T|^{\alpha+\beta-1}(x - \frac{(|T|^{2\alpha}x, z)}{(|T|^{2\alpha}z, z)})$ are proportional.

It is easily seen that Theorem L is the case $\alpha + \beta = 1$ in Theorem 1. As a consequence, we have the following improvement of the Löwner-Heinz inequality, i.e., $A \geq B \geq 0$ implies $A^\alpha \geq B^\alpha$ for $\alpha \in [0, 1]$:

Theorem 2. Let T be an operator on H. If A and B are positive operators on H such that $T^*T \leq A^2$ and $TT^* \leq B^2$, then

$$\|(T|T|^{\alpha+\beta-1}x, y)\|^2 \leq \frac{\|(T|T|^{\alpha+\beta-1}x, z)\|^2 (T|T|^2z, y)}{(T|T|^{2\alpha}z, z)}$$

for all $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \geq 1$ and $x, y, z \in H$ such that $T|T|^{\alpha+\beta-1}z \neq 0$ and $(T|T|^{\alpha+\beta-1}z, y) = 0$. In the case $\alpha, \beta > 0$, the equality in (6) holds if and only if $A^{2\alpha}x = |T|^{2\alpha}x$, $B^{2\beta}y = |T|^{2\beta}y$ and $|T|^{\alpha+\beta-1}T^*y$ and $|T|^{2\alpha}(x - \frac{(|T|^{2\alpha}x, z)}{(|T|^{2\alpha}z, z)})$ are proportional; the third condition is equivalent to the condition that $|T|^{2\beta}y$ and $T|T|^{\alpha+\beta-1}(x - \frac{(|T|^{2\alpha}x, z)}{(|T|^{2\alpha}z, z)})$ are proportional.

Proof of Theorem 1. We only use the positivity of the Gram matrix

$$G = G(U|T|^{\alpha}x, |T|^{\beta}y, U|T|^{\alpha}z).$$

Noting that

$$(|T|^\beta y, U|T|^{\alpha}z) = (y, |T|^\beta U|T|^{\alpha}z) = (y, T|T|^\alpha z) = 0$$

by the assumption, we have

$$G = \begin{pmatrix}
\|T|^{\alpha}x\|^2 & (U|T|^{\alpha}x, |T|^{\beta}y) & (U|T|^{\alpha}x, U|T|^{\alpha}z) \\
(U|T|^{\alpha}x, |T|^{\beta}y)^* & \|T|^{\beta}y\|^2 & 0 \\
(U|T|^{\alpha}x, U|T|^{\alpha}z)^* & 0 & \|T|^{\alpha}z\|^2 \\
\end{pmatrix}.$$

Since $|T|^\alpha z \neq 0$, we have

$$\|(T|T|^{\alpha+\beta-1}x, y)\|^2 \leq \frac{\|(T|T|^{\alpha+\beta-1}x, z)\|^2 (T|T|^2z, y)}{(T|T|^{2\alpha}z, z)}.$$
To prove the equality condition, we set up the following lemma, which is applied to the vectors \(u = U|T|^\alpha x, v = U|T|^\alpha z \) and \(w = |T^*|^\beta y \).

Lemma. (1) If \(v \neq 0 \) and \((v, w) = 0 \), then \(\{u, v, w\} \) is linearly dependent if and only if \(w \) and \(u - \frac{(u,v)}{\|v\|^2} v \) are proportional.

(2) Let \(T = U|T| \) be the polar decomposition of an operator \(T \) on \(H \), (namely \(\ker(U) = \ker(T) \)). For \(\alpha, \beta > 0 \) with \(\alpha + \beta \geq 1 \) and \(y, w \in H \), the following conditions are mutually equivalent:

(i) \(|T|^\beta y \) and \(U|T|^\alpha w \) are proportional.

(ii) \(|T|^{\alpha+\beta-1} T^* y \) and \(|T|^{2\alpha} w \) are proportional.

(iii) \(|T|^\beta y \) and \(T|T|^{\alpha-1} w \) are proportional.

Proof. (1) Suppose that \(au + bv + cw = 0 \) for some \((a, b, c) \neq 0 \). Then \(a(u, v) + b\|v\|^2 = 0 \) and so \(b = -\frac{a(u,v)}{\|v\|^2} \). Hence we have

\[
0 = au + bv + cw = a(u - \frac{(u,v)}{\|v\|^2} v) + cw.
\]

Since \(a = c = 0 \) does not occur by \(v \neq 0 \), vectors \(u - \frac{(u,v)}{\|v\|^2} v \) and \(w \) are proportional. The converse is easily checked.

(2) (i) is equivalent to the statement that \(U|T|^\beta U^* y \) and \(U|T|^\alpha w \) are proportional. Noting that \(\alpha, \beta > 0 \) and \(\ker(U) = \ker(T) \), it is equivalent to (ii). Similarly we have the equivalence between (i) and (iii).

\[\qed\]

3. Furuta inequality

In [6], the Heinz-Kato-Furuta inequality is extended by the use of the Furuta inequality; Theorem 1 also gives us an improvement of the extension due to Furuta. For the sake of convenience, we cite the Furuta inequality [4]; see also [2],[5],[8].

The Furuta inequality. If \(A \geq B \geq 0 \), then for each \(r \geq 0 \),

\[
(B^r A^p B^r)^{1/q} \geq (B^r B^p B^r)^{1/q}
\]

holds for \(p \geq 0 \) and \(q \geq 1 \) with

(*) \begin{align*}
(1+2r)q &\geq p + 2r.
\end{align*}

The domain representing (*) is drawn in Figure 1 and it is shown in [11] that this domain is the best possible one for the Furuta inequality.

Theorem 3. Let \(T \) be an operator on \(H \). If \(A \) and \(B \) are positive operators on \(H \) such that \(T^* T \leq A^2 \) and \(TT^* \leq B^2 \). Then for each \(r, s \geq 0 \)

\[
|\langle |T|^{(1+2r)^\alpha+(1+2s)^\beta-1} x, y \rangle|^2 + |\langle |T|^{2(1+2r)\alpha} x, z \rangle|^2 |\langle |T^*|^{2(1+2s)\beta} y, y \rangle|^2

\leq \frac{((|T|^{2(1+2r)\alpha} x, z))}{(|T|^{2(1+2r)\alpha} z, z) |\langle |T^*|^{2(1+2s)\beta} y, y \rangle|^2}
\]

for all \(p, q \geq 1 \), \(\alpha, \beta \in [0, 1] \) with \((1+2r)\alpha + (1+2s)^\beta \geq 1 \) and \(x, y, z \in H \) such that \(T|T|^{(1+2r)\alpha+(1+2s)^\beta-1} z \neq 0 \) and \(T|T|^{(1+2r)^\alpha+(1+2s)^\beta-1} y, z \neq 0 \). In the case \(\alpha, \beta > 0 \), the equality in (7) holds if and only if

\[
|T|^{2(1+2r)\alpha} x = |T|^{2(1+2s)\beta} y \text{ and } |T^*|^{2(1+2s)\beta} y = |T^*|^{2(1+2r)^\alpha} x.
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
$|T|^2(1+2r)^\alpha + 2(1+2s)^\beta - 1 T^* y$ are proportional; the latter is equivalent to the statement that $T|T|^{(1+2r)^\alpha + (1+2s)^\beta - 1} (x - \frac{(T|^2(1+2r)^\alpha x, z)}{(T|^2(1+2r)^\alpha z, z)} z)$ and $|T^*|^2(1+2s)^\beta y$ are proportional.

Proof. We use Theorem 1 by replacing α (resp. β) by $\alpha_1 = (1 + 2r)^\alpha$ (resp. $\beta_1 = (1 + 2s)^\beta$). Then we have

$$|T|^2\alpha_1 + (T|^2(1+2r)^\alpha z, z) \leq \frac{|T|^2\alpha_1 x, x}{(T|^2(1+2r)^\alpha x, x)} (1+2r)^\alpha \alpha_1 + 2(1+2s)^\beta - 1 (x - \frac{(T|^2(1+2r)^\alpha x, z)}{(T|^2(1+2r)^\alpha z, z)} z)$$

Next we use the Furuta inequality for $|T|^2 \leq A^2$ and $|T^*|^2 \leq B^2$; namely (for the former) we replace A, B; q in the Furuta inequality by A^2, B^2; $\frac{p+2r}{(1+2r)^\alpha}$ respectively. Then we have

$$|T|^2\alpha_1 = |T|^2(1+2r)^\alpha \leq \frac{|T|^2A^2B^2}{(|T|^2A^2)^{1+2r}}$$

and similarly

$$|T^*|^2\beta_1 = |T^*|^2(1+2s)^\beta \leq \frac{|T^*|^2B^2A^2}{(|T^*|^2B^2)^{1+2s}}.$$
that is, $A^2 \geq B^2$ ensures

$$(B^{2(1+2r)\alpha}x,x)^2 \leq ((B^{2r}A^{2p}B^{2r})^{\frac{1+2r\alpha}{1+2r}} x,x)$$

for all $p \geq 1$, $r \geq 0$ and $\alpha \in [0,1]$. This is nothing but the Furuta inequality.

4. A CONCLUDING REMARK

Lin also discussed Bernstein type inequalities independently of Theorem L [9, Theorem 3], see [1]. As an application of Theorem 1, we have a generalization of it:

Theorem 4. Let T be an operator on H having a nonzero normal eigenvalue λ with an eigenvector e. If $y \in H$ satisfies $(e, y) = 0$ and $T^* y \neq 0$, then

$$|\lambda|^2 |(x, e)|^2 \leq \frac{\|Tx\|^2 \|T^*|\beta T^* y\|^2 - \|T|T|^\beta x, T^* y\|^2}{\|T^*|\beta T^* y\|^2}$$

for all $x \in H$ and $\beta \in [0,1]$.

Proof. We put $\alpha = 1$, $z = e$ and replace y by $T^* y$ in Theorem 1. Since $(|T|^\beta e, T^* y) = 0$ by $(e, y) = 0$, it follows from Theorem 1 that

$$|(T|T|^\beta x, T^* y)|^2 + \|T^*|\beta T^* y\|^2 |\lambda|^2 |(x, e)|^2 \leq \|Tx\|^2 \|T^*|\beta T^* y\|^2,$$

so that we have the desired inequality. \qed

We obtain Lin’s inequality [9, Theorem 3] by taking $\beta = 0$ in Theorem 4.

Acknowledgement

The authors would like to express their thanks to Prof. T. Furuta for his valuable comments and suggestions based on his own aesthetic sense.

References

4. T. Furuta, *A \geq B \geq 0 assures (B^{p+2r})^{1/q} \geq B^{(p+2r)/q} for r \geq 0, p \geq 0, q \geq 1 with (1+2r)q \geq p+2r*, Proc. Amer. Math. Soc., 101 (1987), 85-88. MR 89b:47028

Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582, Japan
E-mail address: mfujii@cc.osaka-kyoiku.ac.jp

Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316, Japan
E-mail address: nakamoto@base.ibaraki.ac.jp