Extensions of Heinz-Kato-Furuta inequality
HTML articles powered by AMS MathViewer
- by Masatoshi Fujii and Ritsuo Nakamoto
- Proc. Amer. Math. Soc. 128 (2000), 223-228
- DOI: https://doi.org/10.1090/S0002-9939-99-05242-9
- Published electronically: June 30, 1999
- PDF | Request permission
Abstract:
We give an extension of Lin’s recent improvement of a generalized Schwarz inequality, which is based on the Heinz-Kato-Furuta inequality. As a consequence, we can sharpen the Heinz-Kato-Furuta inequality.References
- Herbert J. Bernstein, An inequality for selfadjoint operators on a Hilbert space, Proc. Amer. Math. Soc. 100 (1987), no. 2, 319–321. MR 884472, DOI 10.1090/S0002-9939-1987-0884472-8
- Masatoshi Fujii, Furuta’s inequality and its mean theoretic approach, J. Operator Theory 23 (1990), no. 1, 67–72. MR 1054816
- Masatoshi Fujii and Takayuki Furuta, Löwner-Heinz, Cordes and Heinz-Kato inequalities, Math. Japon. 38 (1993), no. 1, 73–78. MR 1204185
- Takayuki Furuta, $A\geq B\geq 0$ assures $(B^rA^pB^r)^{1/q}\geq B^{(p+2r)/q}$ for $r\geq 0$, $p\geq 0$, $q\geq 1$ with $(1+2r)q\geq p+2r$, Proc. Amer. Math. Soc. 101 (1987), no. 1, 85–88. MR 897075, DOI 10.1090/S0002-9939-1987-0897075-6
- Takayuki Furuta, An elementary proof of an order preserving inequality, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no. 5, 126. MR 1011850
- Takayuki Furuta, Determinant type generalizations of Heinz-Kato theorem via Furuta inequality, Proc. Amer. Math. Soc. 120 (1994), no. 1, 223–231. MR 1176068, DOI 10.1090/S0002-9939-1994-1176068-1
- Takayuki Furuta, An extension of the Heinz-Kato theorem, Proc. Amer. Math. Soc. 120 (1994), no. 3, 785–787. MR 1169027, DOI 10.1090/S0002-9939-1994-1169027-6
- Eizaburo Kamei, A satellite to Furuta’s inequality, Math. Japon. 33 (1988), no. 6, 883–886. MR 975867
- C.-S. Lin, Heinz’s inequality and Bernstein’s inequality, Proc. Amer. Math. Soc. 125 (1997), no. 8, 2319–2325. MR 1376997, DOI 10.1090/S0002-9939-97-03811-2
- Gert K. Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc. 36 (1972), 309–310. MR 306957, DOI 10.1090/S0002-9939-1972-0306957-4
- Kôtarô Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc. 124 (1996), no. 1, 141–146. MR 1291794, DOI 10.1090/S0002-9939-96-03055-9
Bibliographic Information
- Masatoshi Fujii
- Affiliation: Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582, Japan
- Email: mfujii@cc.osaka-kyoiku.ac.jp
- Ritsuo Nakamoto
- Affiliation: Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316, Japan
- Email: nakamoto@base.ibaraki.ac.jp
- Received by editor(s): November 3, 1997
- Received by editor(s) in revised form: March 23, 1998
- Published electronically: June 30, 1999
- Communicated by: David R. Larson
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 223-228
- MSC (1991): Primary 47A30, 47A63
- DOI: https://doi.org/10.1090/S0002-9939-99-05242-9
- MathSciNet review: 1653461