A local approach to functionals on $L^\infty (\mu ,X)$
HTML articles powered by AMS MathViewer
- by Santiago Díaz
- Proc. Amer. Math. Soc. 128 (2000), 101-109
- DOI: https://doi.org/10.1090/S0002-9939-99-05284-3
- Published electronically: June 21, 1999
- PDF | Request permission
Abstract:
Let $(\Omega ,\Sigma ,\mu )$ be a probability space and $X$ a Banach space. We show that the dual of $L^{\infty }(\mu ,X)$ can be “locally” identified with $L^{1}(\mu ,X^{*}).$References
- C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR 0467310
- P. Cembranos and J. Mendoza, Banach Spaces of Vector-Valued Functions, Lect. Notes in Math. n. 1676, Springer, Berlin, Heidelberg, New York (1997).
- Santiago Díaz, Complemented copies of $l_1$ in $L^\infty (\mu ,X)$, Rocky Mountain J. Math. 27 (1997), no. 3, 779–784. MR 1490274, DOI 10.1216/rmjm/1181071892
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297, DOI 10.1017/CBO9780511526138
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- Stefan Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72–104. MR 552464, DOI 10.1515/crll.1980.313.72
Bibliographic Information
- Santiago Díaz
- Affiliation: Departamento de Matemática Aplicada II, Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos 41092, Sevilla, Spain
- MR Author ID: 310764
- Email: madrigal@cica.es
- Received by editor(s): March 6, 1998
- Published electronically: June 21, 1999
- Additional Notes: This research has been partially supported by the DGICYT project n. PB97-0706 and by La Consejería de Educación y Ciencia de la Junta de Andalucía.
- Communicated by: Dale Alspach
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 101-109
- MSC (1991): Primary 46E40
- DOI: https://doi.org/10.1090/S0002-9939-99-05284-3
- MathSciNet review: 1657715