A note on $\lambda$-operations in orthogonal K-theory
HTML articles powered by AMS MathViewer
- by Mohamed Elhamdadi
- Proc. Amer. Math. Soc. 128 (2000), 1-4
- DOI: https://doi.org/10.1090/S0002-9939-99-05376-9
- Published electronically: September 9, 1999
- PDF | Request permission
Abstract:
In Comment. Math. Helv. 55 (1980), 233â254, Kratzer defined Lambda operations on classical algebraic K-theory by using exterior powers of representations and a splitting principle (R. G. Swan, Proc. Sympos. in Pure Math. 21 (1971), 155â159). Because hyperbolic forms are not stable under exterior powers, we instead use a larger class of symmetric bilinear forms to define the operation of exterior powers on the classifying space of the orthogonal K-theory.References
- Anthony Bak, $K$-theory of forms, Annals of Mathematics Studies, No. 98, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981. MR 632404
- M. Elhamdadi, Sur les Lambda-opĂ©rations et la L-thĂ©orie, ThĂšse de Doctorat de lâuniversitĂ© de Nice-Sophia Antipolis (1996).
- Howard L. Hiller, $\lambda$-rings and algebraic $K$-theory, J. Pure Appl. Algebra 20 (1981), no. 3, 241â266. MR 604319, DOI 10.1016/0022-4049(81)90062-1
- Max Karoubi, ThĂ©orie de Quillen et homologie du groupe orthogonal, Ann. of Math. (2) 112 (1980), no. 2, 207â257 (French). MR 592291, DOI 10.2307/1971326
- Max-Albert Knus, Quadratic and Hermitian forms over rings, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 294, Springer-Verlag, Berlin, 1991. With a foreword by I. Bertuccioni. MR 1096299, DOI 10.1007/978-3-642-75401-2
- Ch. Kratzer, $\lambda$-structure en $K$-thĂ©orie algĂ©brique, Comment. Math. Helv. 55 (1980), no. 2, 233â254 (French). MR 576604, DOI 10.1007/BF02566684
- Jean-Louis Loday, $K$-thĂ©orie algĂ©brique et reprĂ©sentations de groupes, Ann. Sci. Ăcole Norm. Sup. (4) 9 (1976), no. 3, 309â377 (French). MR 447373
- Amit Roy, Cancellation of quadratic form over commutative rings, J. Algebra 10 (1968), 286â298. MR 231844, DOI 10.1016/0021-8693(68)90080-X
- Christophe SoulĂ©, OpĂ©rations en $K$-thĂ©orie algĂ©brique, Canad. J. Math. 37 (1985), no. 3, 488â550 (French). MR 787114, DOI 10.4153/CJM-1985-029-x
- Richard G. Swan, A splitting principle in algebraic $K$-theory, Representation theory of finite groups and related topics (Proc. Sympos. Pure Math., Vol. XXI, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 155â159. MR 0316532
Bibliographic Information
- Mohamed Elhamdadi
- Affiliation: Department of Mathematics, University of South Florida, 4202 East Fowler Ave., PHY 114, Tampa, Florida 33620-5700
- MR Author ID: 643744
- Email: emohamed@math.usf.edu
- Received by editor(s): January 23, 1998
- Published electronically: September 9, 1999
- Communicated by: Ralph Cohen
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 1-4
- MSC (1991): Primary 19G38, 11E57
- DOI: https://doi.org/10.1090/S0002-9939-99-05376-9
- MathSciNet review: 1670434