Complemented ideals in the Fourier algebra of a locally compact group
HTML articles powered by AMS MathViewer
- by Peter J. Wood
- Proc. Amer. Math. Soc. 128 (2000), 445-451
- DOI: https://doi.org/10.1090/S0002-9939-99-04989-8
- Published electronically: October 12, 1999
- PDF | Request permission
Abstract:
In this paper we provide a necessary condition for a closed ideal in the Fourier algebra of a locally compact amenable group to be completely complemented. The classification of completely complemented ideals is completed in the case of an amenable discrete group. We also investigate the ideals possessing a bounded approximate identity.References
- Dale E. Alspach and Alec Matheson, Projections onto translation-invariant subspaces of $L_{1}(\textbf {R})$, Trans. Amer. Math. Soc. 277 (1983), no. 2, 815–823. MR 694390, DOI 10.1090/S0002-9947-1983-0694390-7
- David P. Blecher, A completely bounded characterization of operator algebras, Math. Ann. 303 (1995), no. 2, 227–239. MR 1348798, DOI 10.1007/BF01460988
- David P. Blecher, The standard dual of an operator space, Pacific J. Math. 153 (1992), no. 1, 15–30. MR 1145913
- David P. Blecher, Commutativity in operator algebras, Proc. Amer. Math. Soc. 109 (1990), no. 3, 709–715. MR 1009985, DOI 10.1090/S0002-9939-1990-1009985-X
- David P. Blecher and Vern I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), no. 2, 262–292. MR 1121615, DOI 10.1016/0022-1236(91)90042-4
- P. C. Curtis Jr. and R. J. Loy, The structure of amenable Banach algebras, J. London Math. Soc. (2) 40 (1989), no. 1, 89–104. MR 1028916, DOI 10.1112/jlms/s2-40.1.89
- Edward G. Effros and Zhong-Jin Ruan, On matricially normed spaces, Pacific J. Math. 132 (1988), no. 2, 243–264. MR 934168
- Edward G. Effros and Zhong-Jin Ruan, On the abstract characterization of operator spaces, Proc. Amer. Math. Soc. 119 (1993), no. 2, 579–584. MR 1163332, DOI 10.1090/S0002-9939-1993-1163332-4
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628
- Brian Forrest, Amenability and bounded approximate identities in ideals of $A(G)$, Illinois J. Math. 34 (1990), no. 1, 1–25. MR 1031879
- Barry Edward Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, No. 127, American Mathematical Society, Providence, R.I., 1972. MR 0374934
- B. E. Johnson, Non-amenability of the Fourier algebra of a compact group, J. London Math. Soc. (2) 50 (1994), no. 2, 361–374. MR 1291743, DOI 10.1112/jlms/50.2.361
- B. Host, Le théorème des idempotents dans $B(G)$, Bull. Soc. Math. France 114 (1986), no. 2, 215–223 (French, with English summary). MR 860817
- A. Ya. Khelemskiĭ, Flat Banach modules and amenable algebras, Trudy Moskov. Mat. Obshch. 47 (1984), 179–218, 247 (Russian). MR 774950
- Michael Leinert, Faltungsoperatoren auf gewissen diskreten Gruppen, Studia Math. 52 (1974), 149–158 (German). MR 355480, DOI 10.4064/sm-52-2-149-158
- Lui, T-S, van Rooij A. and Wang, J.K., Projections and approximate identities for ideals in group algebras, Trans. Amer. Math. Soc. 175 (1973) 469-482
- Vern I. Paulsen, Representations of function algebras, abstract operator spaces, and Banach space geometry, J. Funct. Anal. 109 (1992), no. 1, 113–129. MR 1183607, DOI 10.1016/0022-1236(92)90014-A
- Haskell P. Rosenthal, Projections onto translation-invariant subspaces of $L^{p}(G)$, Mem. Amer. Math. Soc. 63 (1966), 84. MR 211198
- Walter Rudin, Projections on invariant subspaces, Proc. Amer. Math. Soc. 13 (1962), 429–432. MR 138012, DOI 10.1090/S0002-9939-1962-0138012-4
- Zhong-Jin Ruan, The operator amenability of $A(G)$, Amer. J. Math. 117 (1995), no. 6, 1449–1474. MR 1363075, DOI 10.2307/2375026
- Ruan, Z-J., and Xu, G., Splitting properties of operator bimodules and operator amenability of Kac algebras (1996) preprint
Bibliographic Information
- Peter J. Wood
- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Email: pwood@barrow.uwaterloo.ca
- Received by editor(s): August 18, 1996
- Received by editor(s) in revised form: March 10, 1998
- Published electronically: October 12, 1999
- Communicated by: Dale Alspach
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 445-451
- MSC (2000): Primary 46J20, 46L07; Secondary 43A30, 46H25
- DOI: https://doi.org/10.1090/S0002-9939-99-04989-8
- MathSciNet review: 1616589