On pointed Hopf algebras of dimension $p^n$
HTML articles powered by AMS MathViewer
- by M. Beattie, S. Dăscălescu and L. Grünenfelder
- Proc. Amer. Math. Soc. 128 (2000), 361-367
- DOI: https://doi.org/10.1090/S0002-9939-99-04996-5
- Published electronically: July 6, 1999
- PDF | Request permission
Abstract:
In this note we describe nonsemisimple Hopf algebras of dimension $p^n$ with coradical isomorphic to $kC$, $C$ abelian of order $p^{n-1}$, over an algebraically closed field $k$ of characteristic zero. If $C$ is cyclic or $C=(C_p)^{n-1}$, then we also determine the number of isomorphism classes of such Hopf algebras.References
- N. Andruskiewitsch and H.-J. Schneider, Hopf algebras of order $p^2$ and braided Hopf algebras of order $p$, J. Algebra 199 (1998), 430-454.
- M. Beattie, S. Dăscălescu, L. Grünenfelder, C. Năstăsescu, Finiteness conditions, co-Frobenius Hopf algebras and quantum groups, J. Algebra 200 (1998), 312–333.
- M. Beattie, S. Dăscălescu, L. Grünenfelder, Constructing pointed Hopf algebras by Ore extensions, preprint.
- S. Gelaki, Quantum groups of dimension $pq^2$, Israel J. Math. 102 (1997), 227-267.
- Shlomo Gelaki, On pointed ribbon Hopf algebras, J. Algebra 181 (1996), no. 3, 760–786. MR 1386578, DOI 10.1006/jabr.1996.0145
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145, DOI 10.1007/978-1-4612-0783-2
- Richard G. Larson and David E. Radford, Semisimple Hopf algebras, J. Algebra 171 (1995), no. 1, 5–35. MR 1314091, DOI 10.1006/jabr.1995.1002
- Akira Masuoka, Semisimple Hopf algebras of dimension $6,8$, Israel J. Math. 92 (1995), no. 1-3, 361–373. MR 1357764, DOI 10.1007/BF02762089
- Akira Masuoka, Self-dual Hopf algebras of dimension $p^3$ obtained by extension, J. Algebra 178 (1995), no. 3, 791–806. MR 1364343, DOI 10.1006/jabr.1995.1378
- Akira Masuoka, The $p^n$ theorem for semisimple Hopf algebras, Proc. Amer. Math. Soc. 124 (1996), no. 3, 735–737. MR 1301036, DOI 10.1090/S0002-9939-96-03147-4
- Akira Masuoka, Semisimple Hopf algebras of dimension $2p$, Comm. Algebra 23 (1995), no. 5, 1931–1940. MR 1323710, DOI 10.1080/00927879508825319
- Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637, DOI 10.1090/cbms/082
- David E. Radford, Operators on Hopf algebras, Amer. J. Math. 99 (1977), no. 1, 139–158. MR 437581, DOI 10.2307/2374012
- David E. Radford, Irreducible representations of ${\scr U}_q(g)$ arising from $\textrm {Mod}^\bullet _{C^{1/2}}$, Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992) Israel Math. Conf. Proc., vol. 7, Bar-Ilan Univ., Ramat Gan, 1993, pp. 143–170. MR 1261906
- David E. Radford, On Kauffman’s knot invariants arising from finite-dimensional Hopf algebras, Advances in Hopf algebras (Chicago, IL, 1992) Lecture Notes in Pure and Appl. Math., vol. 158, Dekker, New York, 1994, pp. 205–266. MR 1289427
- D. Ştefan, Hopf subalgebras of pointed Hopf algebras and applications, Proc. Amer. Math. Soc. 125 (1997), no. 11, 3191–3193. MR 1423335, DOI 10.1090/S0002-9939-97-04143-9
- Yongchang Zhu, Hopf algebras of prime dimension, Internat. Math. Res. Notices 1 (1994), 53–59. MR 1255253, DOI 10.1155/S1073792894000073
Bibliographic Information
- M. Beattie
- Affiliation: Department of Mathematics and Computer Science, Mount Allison University, Sack- ville, New Brunswick, Canada E4L 1E6
- Email: mbeattie@mta.ca
- S. Dăscălescu
- Affiliation: Faculty of Mathematics, University of Bucharest, Str. Academiei 14, RO-70109 Bucharest 1, Romania
- Email: sdascal@al.math.unibuc.ro
- L. Grünenfelder
- Affiliation: Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5
- Email: Luzius@mscs.dal.ca
- Received by editor(s): October 7, 1997
- Received by editor(s) in revised form: April 3, 1998
- Published electronically: July 6, 1999
- Additional Notes: The first and third authors research was partially supported by NSERC
- Communicated by: Ken Goodearl
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 361-367
- MSC (1991): Primary 16W30
- DOI: https://doi.org/10.1090/S0002-9939-99-04996-5
- MathSciNet review: 1622781