TOWERS OF BOREL FUNCTIONS

JAMES HIRSCORN

(Communicated by Alan Dow)

Abstract. We give mathematical reformulations of the cardinals \(p \) and \(t \) in terms of families of Borel functions. As an application we show that \(t \) is invariant under the addition of a single Cohen real.

1. Introduction

Definitions and notation. Let \(\mathbb{N} \) be the set of all nonnegative integers. We define a relation “almost set inclusion” on \(\mathcal{P}(\mathbb{N}) \) by

\[A \subseteq^* B \iff |A \setminus B| < \aleph_0, \]

where \(A, B \subseteq \mathbb{N} \). And \(A \supseteq^* B \) iff \(B \subseteq^* A \). For a family \(\mathcal{F} \subseteq \mathcal{P}(\mathbb{N}), A \subseteq \mathbb{N} \) is a pseudo-intersection of \(\mathcal{F} \) iff \(A \subseteq^* F \) for every \(F \in \mathcal{F} \).

A family of (infinite) subsets of \(\mathbb{N} \) is called a filter base iff every nonempty finite subfamily has an infinite intersection. Let \(p \) be the cardinality of the smallest filter base with no infinite pseudo-intersection. Let \(\mathcal{P}_\infty(\mathbb{N}) \) denote the set of all infinite subsets of \(\mathbb{N} \). A tower is a subfamily of \(\mathcal{P}_\infty(\mathbb{N}) \) that is well-ordered by \(\supseteq^* \). Let \(t \) be the cardinality of the smallest tower with no infinite pseudo-intersection.

Now we define the corresponding notions in the realm of functions from \(\mathbb{R} \) into \(\mathcal{P}(\mathbb{N}) \). For a property of the reals \(P(x) \), we say that \(P(x) \) for almost all \(x \) in \(\mathbb{R} \) iff there is a comeager \(X \subseteq \mathbb{R} \) such that \(P(x) \) holds for all \(x \in X \). We define a relation on the set of all functions from \(\mathbb{R} \) to \(\mathcal{P}(\mathbb{N}) \) by

\[f \subseteq^* g \iff f(x) \subseteq^* g(x) \text{ for almost all } x \in \mathbb{R}, \]

where \(f, g : \mathbb{R} \to \mathcal{P}(\mathbb{N}) \). For a family \(\mathcal{F} \) of functions from \(\mathbb{R} \) to \(\mathcal{P}(\mathbb{N}) \), \(f : \mathbb{R} \to \mathcal{P}(\mathbb{N}) \) is a pseudo-intersection of \(\mathcal{F} \) iff \(f \subseteq^* g \) for every \(g \in \mathcal{F} \).

Definition 1.1. A family \(\mathcal{F} \) of functions from \(\mathbb{R} \) to \(\mathcal{P}(\mathbb{N}) \) is filtered iff for every nonempty finite subfamily \(\mathcal{A} \subseteq \mathcal{F} \),

\[\bigcap_{f \in \mathcal{A}} f(x) \text{ is infinite for almost all } x \in \mathbb{R}. \]

Definition 1.2. A family of functions \(\mathcal{T} \) from \(\mathbb{R} \) to \(\mathcal{P}(\mathbb{N}) \) is a tower iff

1. \(\mathcal{T} \) is well-ordered by \(\supseteq^* \), and
2. for every \(f \in \mathcal{T}, f(x) \) is infinite for almost all \(x \in \mathbb{R} \).
Denote the Cantor set, i.e. \{0,1\}^N with the product topology, by \mathcal{C}. We give \mathcal{P}(\mathbb{N}) a topology by identifying \mathcal{P}(\mathbb{N}) with \mathcal{C}.

Definition 1.3. Let \(p_1 \) be the cardinality of the smallest filtered family \(\mathcal{F} \) of Borel functions from \(\mathbb{R} \) to \(\mathcal{P}(\mathbb{N}) \) such that there is no Borel function \(f : \mathbb{R} \to \mathcal{P}_\infty(\mathbb{N}) \) which is a pseudo-intersection of \(\mathcal{F} \).

Our first claim is that \(p = p_1 \).

Definition 1.4. Let \(t_1 \) be the cardinality of the smallest tower \(\mathcal{T} \) of Borel functions from \(\mathbb{R} \) to \(\mathcal{P}(\mathbb{N}) \) such that there is no Borel function \(f : \mathbb{R} \to \mathcal{P}_\infty(\mathbb{N}) \) which is a pseudo-intersection of \(\mathcal{T} \).

The other main result of this paper is that \(t = t_1 \). No specialized knowledge of set theory is required in order to understand the proofs.

I wish to thank Stevo Todorcevic for his handwritten notes: "\(\mathcal{C}_\omega \models \hat{p} \leq \hat{\mathcal{p}} \)" from the summer of 1997.

2. The proof

To start, we need the following basic facts about \(p \) and \(t \). Let \(\mathbb{N}^\mathbb{N} \) be the set of all functions from \(\mathbb{N} \) to \(\mathbb{N} \). We define the relation \(\leq^* \) on \(\mathbb{N}^\mathbb{N} \) by

\[
 f \leq^* g \quad \text{iff} \quad \text{there is an } n \in \mathbb{N} \text{ such that } f(k) \leq g(k) \text{ for all } k \geq n,
\]

where \(f, g \in \mathbb{N}^\mathbb{N} \). Let \(b \) be the size of the smallest subfamily of \(\mathbb{N}^\mathbb{N} \) that is unbounded in \((\mathbb{N}^\mathbb{N}, \leq^*) \).

Theorem 2.1. \(\omega_1 \leq p \leq t \leq b \).

Proof. See [2].

We also use the following trivial fact.

Fact 2.2. \(t \) is regular.

Proof. See [2].

Let \(I \) be an ideal. Define

\[
 \text{add}(I) = \min \{|A| : A \subseteq I \text{ and } \bigcup A \notin I\}.
\]

For a topological space \(X \), we let \(\mathcal{M} \) denote the \(\sigma \)-ideal of meager subsets of \(X \). We shall need the following lower bound for \text{add}(\mathcal{M}).

Theorem 2.3 (Piotrowski–Szymański). For any Polish space, \(\text{add}(\mathcal{M}) \geq t \).

Proof. See [4].

Theorem 2.4. \(p = p_1 \).

Theorem 2.5. \(t = t_1 \).

We prove Theorems 2.4 and 2.5 simultaneously.

Proofs. \(t_1 \leq t \): Let \(\{A_\xi\}_{\xi < t} \subseteq \mathcal{P}_\infty(\mathbb{N}) \) be a tower with no infinite pseudo-intersection, such that the enumeration respects the well-ordering of the tower, i.e. \(\xi < \eta \rightarrow A_\eta \subseteq^* A_\xi \). For each \(\xi < t \), define \(f_\xi : \mathbb{R} \to \mathcal{P}_\infty(\mathbb{N}) \) by \(f_\xi(x) = A_\xi \) for all \(x \in \mathbb{R} \). Then obviously \(\{f_\xi\}_{\xi < t} \) is a tower of Borel functions. We need to show that there is no Borel function \(f : \mathbb{R} \to \mathcal{P}_\infty(\mathbb{N}) \) which is a pseudo-intersection of \(\{f_\xi\}_{\xi < t} \).
Suppose to the contrary that \(f \) is such a function. Find a comeager \(G \subseteq \mathbb{R} \) such that \(f \restriction G \) is continuous. For each \(\xi < t \) and \(n \in \mathbb{N} \), define
\[
F_{\xi n} = \{ x \in G : f(x) \cap n \subseteq A_{\xi}\}.
\]
Then each \(F_{\xi n} \) is a relatively closed subset of \(G \). Since \(\bigcup_{n=0}^{\infty} F_{\xi n} \) is a relatively comeager—and in particular, nonmeager—subset of \(G \), there is a nonempty rational interval \(I_{\xi} \) and an \(n_{\xi} \in \mathbb{N} \) such that
\[
G \cap I_{\xi} \subseteq F_{\xi n_{\xi}}.
\]
Since \(t \) is an uncountable regular cardinal (Theorem 2.1 and Fact 2.2), there are \(\pi \in \mathbb{N} \) and a rational interval \(I \) such that
\[
\Gamma = \{ \xi < t : n_{\xi} = \pi \text{ and } I_{\xi} \supseteq I \}
\]
is cofinal in \(t \). Pick \(x \in G \cap I \). Then \(f(x) \setminus \pi \subseteq \bigcap_{\xi \in \Gamma} A_{\xi} \), from which it follows that \(f(x) \) is an infinite pseudo-intersection of \(\{ A_{\xi} \}_{\xi < t} \), a contradiction.

\(p_1 \leq p \): First suppose that \(p = t \). Note that every tower of Borel functions is also filtered. Hence \(p_1 \leq t_1 \leq t = p \).

By Theorem 2.1, it remains to consider the case where \(p < t \). Let \(\{ A_{\xi} \}_{\xi < p} \subseteq \mathcal{P}(\mathbb{N}) \) be a filter base with no infinite pseudo-intersection. For each \(\xi < p \), define \(f_{\xi} : \mathbb{R} \to \mathcal{P}(\mathbb{N}) \) by \(f_{\xi}(x) = A_{\xi} \) for all \(x \in \mathbb{R} \). Obviously \(\{ f_{\xi} \}_{\xi < p} \) is a filtered family of Borel functions. Suppose towards a contradiction that \(f : \mathbb{R} \to \mathcal{P}_\infty(\mathbb{N}) \) is a pseudo-intersection of \(\{ f_{\xi} \}_{\xi < p} \). For each \(\xi < p \), choose a comeager \(G_{\xi} \subseteq \mathbb{R} \) such that \(f(x) \subseteq^* A_{\xi} \) for all \(x \in G_{\xi} \). By assumption and Theorem 2.3, \(p < \text{add}(\mathcal{M}) \), whence there is a comeager \(G \subseteq \bigcap_{\xi < p} G_{\xi} \). But if we take \(x \in G \), then \(f(x) \) is an infinite pseudo-intersection of \(\{ A_{\xi} \}_{\xi < p} \), giving a contradiction.

\(p \leq p_1 , t \leq t_1 \): We take \(\kappa < p \) (\(k < t \)), and prove that \(\kappa < p_1 \) (\(k < t_1 \)). Note that \(\mathbb{R} \) is homeomorphic to the unit interval \((0,1)\) via the standard homeomorphism. Consider the standard surjection \(\Phi : \mathcal{C} \to [0,1] \), where \(\Phi(x) \) is the base 2 expansion of \(x \) after the decimal point, for all \(x \in \mathcal{C} \). \(\Phi \) is a homeomorphism on a co-countable subset of \(\mathcal{C} \). Hence, if we replace the domains of the functions in the formulations of \(p_1 \) and \(t_1 \) with \(\mathcal{C} \), then we are proving an equivalent result.

Suppose that \(f_{\xi} : \mathcal{C} \to \mathcal{P}(\mathbb{N}) (\xi < \kappa) \) is a filtered family (tower) of Borel functions. (For \(\{ f_{\xi} \}_{\xi < \kappa} \) a tower, we assume that the enumeration respects the well-ordering of the tower.) For each \(\xi < \kappa \), we can find a dense \(G_{\delta} \)—and thus comeager—set \(G_{\xi} \subseteq \mathcal{C} \) such that \(f_{\xi} \restriction G_{\xi} \) is continuous. For each nonempty \(F \in [\kappa]^{<\aleph_0} \), write \(F = \{ \xi_1 < \xi_2 < \cdots < \xi_n \} \). Then there is a comeager \(G_{F} \subseteq \mathcal{C} \) such that \(\bigcap_{i=1}^{n} f_{\xi_i}(x) = F \) for all \(x \in G_{F} \) (and for a tower, \(f_{\xi_i}(x) \subseteq^* f_{\xi_j}(x) \) for all \(1 \leq i < j \leq n \), for all \(x \in G_{F} \)).

By Theorem 2.3, there is a dense \(G_{\delta} \) set \(H \subseteq \mathcal{C} \) such that
\[
H \subseteq \bigcap_{\xi < \kappa} G_{\xi} \cap \bigcap_{F \in [\kappa]^{<\aleph_0}} G_{F}.
\]
Then
\[
(1) \quad \text{for all } \xi < \kappa, f_{\xi} \restriction H \text{ is continuous, and}
\]
\[
(2) \quad \text{for all } x \in H, \{ f_{\xi}(x) \}_{\xi < \kappa} \text{ is a filter base,}
\]
\[
(2') \quad \text{for all } x \in H, \{ f_{\xi}(x) \}_{\xi < \kappa} \text{ is a tower.}
\]
Let \(\{ x_n \}_{n=0}^{\infty} \) be an enumeration of a dense subset of \(H \).
Since \(\kappa < p \) (\(\kappa < t \)), by (2) (by (2')), there is a sequence \(\{d(n)\}_{n=0}^{\infty} \subseteq \mathcal{P}(\mathbb{N}) \) such that
\[
(3) \quad d(n) \subseteq^* f_\ell(x_n) \quad \text{for all } n \in \mathbb{N}, \text{ and all } \xi < \kappa.
\]

For the remainder of the proof, we need only the fact that \(\kappa < b \). By (3), for each \(\xi < \kappa \), we can choose \(g_\xi : \mathbb{N} \to \mathbb{N} \) so that \(d(n) \setminus g_\xi(n) \subseteq f_\xi(x_n) \) for all \(n \in \mathbb{N} \).

Since \(\kappa < b \), there is a \(D : \mathbb{N} \to \mathbb{N} \) such that \(g_\xi \leq^* D \) for all \(\xi < \kappa \). For each \(\xi < \kappa \), fix \(m_\xi \in \mathbb{N} \) so that \(g_\xi(n) \leq D(n) \) for all \(n \geq m_\xi \). Then
\[
(4) \quad d(n) \setminus D(n) \subseteq f_\xi(x_n) \quad \text{for all } \xi < \kappa, \text{ for all } n \geq m_\xi.
\]

Now we measure the continuity of \(f_\xi | H \) at each \(x_n \).

Notation. For \(t \in 2^{<\mathbb{N}} \) and \(A \subseteq \mathcal{C}, \{t\}_A = [t] \cap A \).

Claim 5. There is a function \(F : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \) such that for all \(\xi < \kappa \),
\[
\begin{align*}
f_\xi^\prime\prime | x_n \times F(n, \ell) | H & \subseteq [f_\xi(x_n) | \ell] \quad \text{for all but finitely many } (n, \ell) \in \mathbb{N} \times \mathbb{N}, \\
i.e. \quad [f_\xi(x_n) | \ell] = \{A \subseteq \mathbb{N} : f_\xi(x_n) \cap \ell \subseteq A\}, \text{ where } A \subseteq B \text{ means that } A \text{ is an} \\
\text{initial segment of } B \text{ for } A, B \subseteq \mathbb{N}.
\end{align*}
\]

Proof. Let \(\Phi : \mathbb{N} \to \mathbb{N} \times \mathbb{N} \) be a bijection. For each \(\xi < \kappa \), since \(f_\xi | H \) is continuous, there is a function \(F_\xi : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \) such that
\[
f_\xi^\prime\prime | x_n \times F_\xi(n, \ell) | H \subseteq [f_\xi(x_n) | \ell]
\]
for all \(n, \ell \in \mathbb{N} \). For each \(\xi < \kappa \), define \(g_\xi : \mathbb{N} \to \mathbb{N} \) by \(g_\xi(m) = F_\xi(\Phi(m)) \) for all \(m \in \mathbb{N} \). Since \(\kappa < b \), there is an \(h : \mathbb{N} \to \mathbb{N} \) so that \(g_\xi \leq^* h \) for all \(\xi < \kappa \). Define \(F : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \) by \(F(n, \ell) = h(\Phi^{-1}(n, \ell)) \) for all \(n, \ell \in \mathbb{N} \). \(\square \)

Let \(\{s_i\}_{i=0}^{\infty} \) enumerate \(2^{<\mathbb{N}} \). We define \(\{n_i\}_{i=0}^{\infty}, \{k_i\}_{i=0}^{\infty} \subseteq \mathbb{N} \), and \(\{t_i\}_{i=0}^{\infty} \subseteq 2^{<\mathbb{N}} \) by recursion on \(i \) so that for all \(i \in \mathbb{N} \),
\[
\begin{align*}
(a) \quad & s_i \subseteq x_{n_i}, \\
(b) \quad & n_i \geq i, \\
(c) \quad & k_i \in d(n_i), \\
(d) \quad & k_i \geq D(n_i), \\
(e) \quad & k_{i+1} > k_i, \\
(f) \quad & t_i \subseteq x_{n_i}, \text{ and} \\
(g) \quad & |t_i| \geq \max(F(n_i, k_i + 1), |s_i|).
\end{align*}
\]

Let \(i \in \mathbb{N} \) be given. Since \(\{x_n\}_{n=0}^{\infty} \) is dense, there are infinitely many \(x_n \)'s extending \(s_i \). Hence we can find \(n_i \geq i \) such that \(s_i \subseteq x_{n_i} \). Let \(k_i \in d(n_i) \) be sufficiently large so that (d) and (e) hold. Then obviously we can find \(t_i \) as required.

Define \(G^* \subseteq \mathcal{C} \) by
\[
G^* = \bigcap_{m=0}^{\infty} \bigcup_{i=m}^{\infty} [t_i].
\]

By (a), (f), and (g), \(t_i \supseteq s_i \) for all \(i \in \mathbb{N} \). It follows that \(G^* \) is a dense \(G_\delta \) set. Hence \(G = G^* \cap H \) is also dense \(G_\delta \). Now we define \(f : G \to \mathcal{P}(\mathbb{N}) \) by
\[
f(x) = \{k_i : i \in \mathbb{N}, t_i \subseteq x\}.
\]

By (e), \(f(x) \) is infinite for all \(x \in G \), whence \(f \) is well-defined.

Claim 6. For every \(x \in G \), \(f(x) \subseteq^* f_\xi(x) \) for all \(\xi < \kappa \).
Suppose that \((3.3) \) above translation yielding \(\dot{f} \) all \(\kappa < \ell \). Therefore, since \(t_i \subseteq x_n \) and \(k_i + 1 > \ell_x \),
\[
 f''_x(t_i) = f''_x(x_n, |t_i|) \subseteq [f\xi(x_n) | t_i] \subseteq [f\xi(x_n) | k_i + 1].
\]
Since \(i \geq m_\xi \), \(n_i \geq m_\xi \) by (b). Hence by (4), (c), and (d), \(k_i \in f\xi(x_n) \). Thus \(k_i \in A \) for all \(A \in [f\xi(x_n) | k_i + 1] \). Since \(t_i \subseteq x \) and \(x \in H, x \in |t_i| \). Therefore \(f\xi(x) \in [f\xi(x_n) | k_i + 1] \), whence \(k_i \in f\xi(x) \).

Claim 7. \(f \) is continuous.

Proof. Take \(x \in G \) and \(\xi < \kappa \). By Claim 5, there is an \(\ell_x \in \mathbb{N} \) such that
\[
 f''_x(x_n, |F(n, \ell)|) \subseteq [f\xi(x_n) | \ell] \quad \text{for all } n \in \mathbb{N}, \text{ and all } \ell > \ell_x.
\]
We claim that
\[
 f(x) \setminus (\ell_x \cup \{ k_i : i < m_\xi \}) \subseteq f\xi(x).
\]
Suppose that \(i \in \mathbb{N} \) is such that \(k_i \in f(x) \setminus (\ell_x \cup \{ k_i : i < m_\xi \}) \). By (g), \(|t_i| \geq F(n_i, k_i + 1) \). Therefore, since \(t_i \subseteq x_n \) and \(k_i + 1 > \ell_x \),
\[
 f''_x(t_i) = f''_x(x_n, |t_i|) \subseteq [f\xi(x_n) | k_i + 1].
\]
Since \(i \geq m_\xi \), \(n_i \geq m_\xi \) by (b). Hence by (4), (c), and (d), \(k_i \in f\xi(x_n) \). Thus \(k_i \in A \) for all \(A \in [f\xi(x_n) | k_i + 1] \). Since \(t_i \subseteq x \) and \(x \in H, x \in |t_i| \). Therefore \(f\xi(x) \in [f\xi(x_n) | k_i + 1] \), whence \(k_i \in f\xi(x) \).

3. **Adding a single Cohen real**

Definitions and notation. The poset for adding a single Cohen real is viewed as the poset of finite partial functions from \(\mathbb{N} \) into 2 which we denote by \(\mathcal{C} \). If \(f \colon \mathcal{C} \rightarrow \mathcal{P}(\mathbb{N}) \) is a Borel function, then \(\tilde{f} \) is a name for the decoding of \(f \) in the forcing extension. Fix \(\mathcal{C} \)-names \(\tilde{p} \) and \(\tilde{t} \) which are forced to be the values of \(p \) and \(t \) in the extension by one Cohen real, respectively. Let \(\dot{c} \) be the canonical name for the Cohen real.

There is a canonical correspondence between names for reals in the Cohen extension and codes for Borel functions from \(\mathcal{C} \) into \(\mathcal{P}(\mathbb{N}) \). We describe this by \(\dot{x} \mapsto f\dot{x} \), where \(\mathcal{C} \models f\dot{x} = \dot{x} \) (see [3]). And in the other direction we have: \(f \mapsto \dot{x}_f \), where \(\mathcal{C} \models \dot{x}_f = \dot{x} \subseteq \dot{x}_f \subseteq \dot{x} \). Moreover, it is an easy exercise to verify that given any two names \(\dot{x} \) and \(\dot{y} \) for reals,
\[
 (3.1) \quad \mathcal{C} \models \dot{x} \subseteq \dot{y} \quad \text{iff} \quad f\dot{x} \subseteq f\dot{y}.
\]
Also, for any finite sequence \(\dot{x}_1, \ldots, \dot{x}_n \) of names for reals,
\[
 (3.2) \quad \mathcal{C} \models \bigcap_{k=1}^n \dot{x}_k = \mathbb{N}_0 \quad \text{iff} \quad |\bigcap_{i=1}^n f\dot{x}_k(y)| = \mathbb{N}_0 \text{ for almost all } y.
\]
For example, if \(\{ f\xi \}_{\xi < \kappa} \) is a name for a tower, then by (3.1) and (3.2), \(\{ f\xi \}_{\xi < \kappa} \) is a tower of Borel functions. In this manner it is easily checked that
\[
 (3.3) \quad \mathcal{C} \models \tilde{p} = \tilde{p}_1, \quad \text{and}
\]
\[
 (3.4) \quad \mathcal{C} \models \tilde{t} = \tilde{t}_1.
\]
In effect, we are viewing \(\mathcal{C} \)-names as Borel codes (e.g. the code for \(f\dot{x} \)), with the above translation yielding \(\tilde{p} = \tilde{p}_1 \) and \(\tilde{t} = \tilde{t}_1 \). By (3.3) and (3.4), the following Corollaries are immediate from Theorems 2.4 and 2.5.
Corollary 3.5. \(C_\omega \models \check{\dot{p}} = \check{\dot{p}} \).

Corollary 3.6. \(C_\omega \models \check{\dot{i}} = \check{\dot{i}} \).

Remark 3.7. The fact that MA(\(\sigma \)-centered) is preserved under the addition of a single Cohen real is known as Roitman’s Theorem [5]. By Bell’s Theorem [1], Roitman’s Theorem states that \(C_\omega \models \check{\dot{p}} \geq \check{\dot{p}} \).

References

Department of Mathematics, University of Toronto, Toronto, Canada

E-mail address: hirschon@math.toronto.edu