Every $(\lambda ^+,\varkappa ^+)$-regular ultrafilter is $(\lambda ,\varkappa )$-regular
HTML articles powered by AMS MathViewer
- by Paolo Lipparini
- Proc. Amer. Math. Soc. 128 (2000), 605-609
- DOI: https://doi.org/10.1090/S0002-9939-99-05025-X
- Published electronically: July 8, 1999
- PDF | Request permission
Abstract:
We prove the following:
Theorem. If $D$ is a $(\lambda ^+,\varkappa )$-regular ultrafilter, then either
-
[(a)] $D$ is $(\lambda ,\varkappa )$-regular, or
-
[(b)] the cofinality of the linear order $\prod _D\langle \lambda ,<\rangle$ is $\operatorname {cf}\varkappa$, and $D$ is $(\lambda ,\varkappa ’)$-regular for all $\varkappa ’<\varkappa$.
Corollary. Suppose that $\varkappa$ is singular, $\varkappa >\lambda$ and either $\lambda$ is regular, or $\operatorname {cf}\varkappa <\operatorname {cf}\lambda$. Then every $(\lambda ^{+n},\varkappa )$-regular ultrafilter is $(\lambda ,\varkappa )$-regular.
We also discuss some consequences and variations.
References
- Miroslav Benda and Jussi Ketonen, Regularity of ultrafilters, Israel J. Math. 17 (1974), 231–240. MR 396264, DOI 10.1007/BF02756872
- G. V. Cudnovskii and D. V. Cudnovskii, Regular and descending incomplete ultrafilters (English Translation), Soviet Math. Dokl. 12 (1971), 901–905.
- C. C. Chang and H. J. Keisler, Model theory, 2nd ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. MR 0532927
- A. Kanamori, Weakly normal filters and irregular ultrafilters, Trans. Amer. Math. Soc. 220 (1976), 393–399. MR 480041, DOI 10.1090/S0002-9947-1976-0480041-X
- A. Kanamori and M. Magidor, The evolution of large cardinal axioms in set theory, Higher set theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977) Lecture Notes in Math., vol. 669, Springer, Berlin, 1978, pp. 99–275. MR 520190
- J. Keisler, On cardinalities of ultraproducts, Bull. Amer. Math. Soc. 70 (1964), 644–647.
- Jussi Ketonen, Nonregular ultrafilters and large cardinals, Trans. Amer. Math. Soc. 224 (1976), 61–73. MR 419236, DOI 10.1090/S0002-9947-1976-0419236-X
- Kenneth Kunen and Karel Prikry, On descendingly incomplete ultrafilters, J. Symbolic Logic 36 (1971), 650–652. MR 302441, DOI 10.2307/2272467
- P. Lipparini, More on regular ultrafilters in ZFC, revised for J. Symbol. Logic.
- Paolo Lipparini, Ultrafilter translations. I. $(\lambda ,\lambda )$-compactness of logics with a cardinality quantifier, Arch. Math. Logic 35 (1996), no. 2, 63–87. MR 1375069, DOI 10.1007/s001530050034
Bibliographic Information
- Paolo Lipparini
- Affiliation: Dipartimento di Matematica, Viale della Ricerca Scientifica, II Università di Roma (Tor Vergata), I-00133 Rome, Italy
- Email: lipparin@axp.mat.uniroma2.it, lipparini@unica.it
- Received by editor(s): November 20, 1997
- Received by editor(s) in revised form: April 8, 1998
- Published electronically: July 8, 1999
- Additional Notes: This work was performed under the auspices of G.N.S.A.G.A
- Communicated by: Carl G. Jockusch, Jr.
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 605-609
- MSC (1991): Primary 03C20, 04A20
- DOI: https://doi.org/10.1090/S0002-9939-99-05025-X
- MathSciNet review: 1623032