MINIMALLY ALMOST PERIODIC
TOTAL DISCONNECTED GROUPS

CLAUDIO NEBBIA

(Communicated by Roe Goodman)

Abstract. In this paper we prove that every closed noncompact group G of isometries of a homogeneous tree which acts transitively on the tree boundary contains a normal closed cocompact subgroup G' which is minimally almost periodic. Moreover we prove that G' is a topologically simple group.

1. Introduction

Let X be a homogeneous tree of finite order $q + 1 \geq 3$. We denote by Aut(X) the locally compact group of all isometries of X with respect to the natural distance of X ($d(x, y)$ is the length of the unique geodesic connecting x to y). We refer the reader to [2] for undefined notions and terminology. We fix $x_0 \in X$; then the sets $X^+ = \{x \in X : d(x, x_0) \text{ is even}\}$ and $X^- = \{x \in X : d(x, x_0) \text{ is odd}\}$ are the equivalence classes of the relation “$d(x, y)$ is an even number”. Therefore this partition of X into the sets X^+ and X^- is independent of the choice of x_0. If G is a closed noncompact subgroup of Aut(X) acting transitively on the tree boundary Ω, then either G acts transitively on X or G has exactly the orbits X^+ and X^- [4, Prop. 2, pg. 143]. In particular if G has two orbits X^+ and X^-, then every closed noncompact subgroup of G acting transitively on Ω has the same orbits of G. A notable example of this type is the subgroup Aut$^+(X)$ of Aut(X) generated by all rotations of X. More generally, let G be a closed subgroup of Aut(X) acting transitively on X and Ω. Then the subgroup G^+ generated by all rotations of G is an open normal subgroup of G of index 2 acting transitively on Ω and having two orbits (X^+ and X^-) on X. In [8] J. Tits has proved that Aut$^+(X)$ is an algebraically simple group. Furthermore, J. Tits proved that the group G^+ is algebraically simple for a larger class of groups with property (P) (see [8, 4.2, pg. 197]).

Let G be a locally compact group; then G is said to be minimally almost periodic (briefly: m.a.p.) if every finite-dimensional unitary representation is trivial. This is equivalent to the fact that there is no continuous almost periodic function except constant functions.

In the present paper we consider the class \mathcal{G} of all closed subgroups G of Aut(X) with the following properties: G acts transitively on Ω and G has two orbits on X. We prove that every group $G \in \mathcal{G}$ contains one and only one nontrivial normal closed subgroup $G' \in \mathcal{G}$ which is m.a.p., cocompact and topologically simple. This
implies that a group $G \in \mathcal{G}$ is m.a.p. if and only if G is topologically simple. If G acts transitively on X and Ω, then $G^+ \in \mathcal{G}$, therefore also G contains one and only one topologically simple m.a.p. subgroup in \mathcal{G}.

2. The results

Let G be a closed subgroup of $\text{Aut}(X)$. Let H be a closed subgroup of G. Let $v \in X$ be a fixed vertex of X and $K_v = \{g \in G : g(v) = v\}$. K_v is a compact open subgroup of G.

Proposition 1. The space G/H is compact if and only if the orbit $G(v)$ is the union of finitely many orbits of H; that is, there exist $x_1, x_2, \ldots, x_n \in G(v)$, such that $G(v) = H(x_1) \cup H(x_2) \cup \cdots \cup H(x_n)$.

Proof. Let $\{K_v gH\}$ be the partition of G into the double cosets $K_v gH$ for $g \in G$. Since $K_v gH$ is an open set of G and $p(K_v gH) = p(K_v g)$ is a compact open subset of G/H for every $g \in G$ (where $p : G \rightarrow G/H$ is the canonical map), then it is easy to see that G/H is compact if and only if the partition $\{K_v gH\}_{g \in G}$ has only finitely many sets. Therefore the proposition follows from the fact that the map $\Lambda(K_v gH) = H(g^{-1}v)$ is a bijective map of the double cosets of the partition onto the set of H-orbits contained in $G(v)$.

Remark. In particular Proposition 1 implies that if G acts transitively on X, then G/H is a compact space if and only if H has finitely many orbits on X.

Definition 1. Let \mathcal{G} be the class of all closed subgroups G of $\text{Aut}(X)$ with the following properties:

1. G acts transitively on the tree boundary Ω,
2. G has exactly two orbits on X, that is, X^+ and X^-.

If $W \subseteq K_v$ is a subset acting transitively on Ω and g is a translation of even step, then the closed subgroup generated by W and g is in \mathcal{G}. On the other hand, as observed in the introduction, if G acts transitively on Ω and on X, then $G^+ \in \mathcal{G}$. The reader is referred to [2, pg. 31–32, 133–134] for examples. By [4, Prop. 2, pg. 143] it follows that if $G \in \mathcal{G}$ and H is a closed noncompact subgroup of G acting transitively on Ω, then $H \in \mathcal{G}$.

Lemma 1. Let G be in the class \mathcal{G}, and let H be a closed nontrivial normal subgroup of G; then $H \in \mathcal{G}$. In particular G/H is a compact group. If in addition H is open, then G/H is a finite group.

Proof. First we observe that H is not compact. In fact since G has two orbits on X, then G contains no inversion (an inversion interchanges X^+ and X^-). Therefore every compact subgroup of G fixes a vertex $v \in X$ [2, Theorem 5.2, pg. 12]. But if $H \subseteq K_v$, then $H = gHg^{-1} \subseteq gK_v g^{-1} = K_{g(v)}$ for all $g \in G$, which means that H fixes X^+ or X^- and so H fixes X. This is impossible because H is not trivial. We prove now that H acts transitively on Ω. Since H is not trivial, then there exist $h \in H$ and $\omega \in \Omega$ such that $\omega \neq h(\omega)$. Let ω' be an end of Ω such that $\omega' \neq h(\omega)$. Since G acts doubly transitively on Ω (see [2, pg. 29–30]) there exists $g \in G$ such that $g(\omega) = \omega$ and $g(h(\omega)) = \omega'$. Therefore $ghg^{-1}(\omega) = \omega'$ and $\omega' \in H(\omega)$ because $ghg^{-1} \in H$. So $H(\omega) = \Omega$. The lemma follows from [2, Prop. 10.2, pg. 27] and Proposition 1.
Lemma 2. Let G be in the class \mathcal{G}; let $\{H_n\}$ be a sequence of open normal subgroups of G. Then $\bigcap_{n=1}^{\infty} H_n$ is a nontrivial subgroup of G.

Proof. The proof is similar to the proof of [1, Prop. 16.4.4, pg. 302]. We suppose, on the contrary, that $\bigcap_{n=1}^{\infty} H_n$ is trivial. Replacing, if necessary, H_n by $H_1 \cap H_2 \cap \cdots \cap H_n$ we may assume that $H_{n+1} \subseteq H_n$. G contains a translation w [2, Th. 8.1, p. 20]; let K_v be the stability subgroup of a vertex v; let $U = K_v \cup wK_v \cup K_vw^{-1}$. Therefore U is a compact open symmetric neighborhood of the identity e of G. Since $U^n \subseteq U^{n+1}$, then $\bigcup_{n=1}^{\infty} U^n$ is a noncompact open subgroup of G, in fact the subgroup of G generated by U. Since $K_v \subseteq U$, then $\bigcup_{n=1}^{\infty} U^n$ acts transitively on Ω [4, Prop. 1, pg. 143]. Therefore $\bigcup_{n=1}^{\infty} U^n \in \mathcal{G}$ [4, Prop. 2, pg. 143], that is, $\bigcup_{n=1}^{\infty} U^n$ has the same orbits of G. The fact that $K_v \subseteq U$ implies that $G = \bigcup_{n=1}^{\infty} U^n$. The sequence $H_n \cap U^3$ is a sequence of compact open subgroups of U^3 such that $\bigcap_{n=1}^{\infty} (H_n \cap U^3) = \{e\}$. Since $e \in U \subseteq U^3$, it follows that there exists m such that $H_m \cap U^3 \subseteq U$. This implies that $H = H_m \cap U^3$ is a compact open subgroup of G. We prove now that H is a normal subgroup of G. Indeed, if $t \in U$ and $h \in H \subseteq U$, then $tht^{-1} \in U^3 \cap H_m = H$ and $tHt^{-1} \subseteq H$. But U is symmetric and $tHt^{-1} = H$ for every $t \in U$. Since $G = \bigcup_{n=1}^{\infty} U^n$, then $gHg^{-1} = H$ for every $g \in G$. As observed in the first part of the proof of Lemma 1, this is impossible because G is not discrete and H is not trivial.

Let \hat{G} be the set of equivalence classes of unitary continuous irreducible representations of G. If G is a totally disconnected group, then $\text{Ker} \pi$, the kernel of the representation π, is a normal open subgroup of G for every unitary continuous finite dimensional representation π [2, Prop. 1.2, pg. 86].

Definition 2. For $G \in \mathcal{G}$, we define:

$\mathcal{A}(G) = \{H: H$ is a nontrivial normal closed subgroup of $G\}$,

$\mathcal{B}(G) = \{H: H$ is a normal open subgroup of $G\}$,

$\mathcal{C}(G) = \{\text{Ker} \pi: \pi \in \hat{G}$ and $\dim \pi < +\infty\}$.

We have $\mathcal{C}(G) \subseteq \mathcal{B}(G) \subseteq \mathcal{A}(G)$. If $G \in \mathcal{G}$ and $H \in \mathcal{A}(G)$, then G/H is a compact group. In particular, if $p: G \to G/H$ is the natural homomorphism, then $p \circ \pi$ is a finite dimensional irreducible representation of G for every $\pi \in (G/H)$. Therefore $\text{Ker}(p \circ \pi) \in \mathcal{C}(G)$ and $\bigcap_{\pi \in (G/H)} \text{Ker}(p \circ \pi) = H$. This means that

$$\bigcap_{H \in \mathcal{C}} H = \bigcap_{H \in \mathcal{B}} H = \bigcap_{H \in \mathcal{A}} H.$$

We put $G' = \bigcap_{H \in \mathcal{C}} H = \bigcap_{H \in \mathcal{B}} H = \bigcap_{H \in \mathcal{A}} H$. G' is a closed normal subgroup of G and, by Lemma 2, $G' \neq \{e\}$, hence $G' \in \mathcal{G}$. In fact G is separable; therefore there exists a sequence $K_{n+1} \subseteq K_n$ of compact open subgroups of G which is a basis of neighborhoods of the identity of G. Let H_n be the open normal subgroup of G generated by K_n. G/H_n is finite and every $H \in \mathcal{B}(G)$ contains H_n for n sufficiently large. This proves that $\mathcal{B}(G)$ is finite or countable. In particular $G' \neq \{e\}$ by Lemma 2.

We summarize the above facts in the following proposition.

Proposition 2. Let $G' = \bigcap_{H \in \mathcal{A}} H$; then $G' \in \mathcal{A}(G)$. In particular $G' \subseteq H$ for every $H \in \mathcal{A}(G)$. Moreover $G' = \bigcap_{H \in \mathcal{C}} H = \bigcap_{H \in \mathcal{B}} H = \bigcap_{H \in \mathcal{A}} H$.

Theorem. Let $G \in \mathcal{G}$, and let G' be as in Proposition 2. Then $G' \in \mathcal{G}$, G' is a topologically simple group.

Proof. The fact that $G' \in \mathcal{G}$ follows from Lemma 1. Let H be a nontrivial closed normal subgroup of G'. We prove now that $H = G'$. G' is a normal subgroup of G, therefore, for every $g \in G$, gHg^{-1} is a nontrivial closed normal subgroup of G'. Proposition 2 implies that $G'' \subseteq gHg^{-1}$ for every $g \in G$ where $G'' = (G')'$ (we recall that if $G \in \mathcal{G}$, then $G' \in \mathcal{G}$ and $G'' \neq \{e\}$). In particular $\{e\} \neq G'' \subseteq \bigcap_{g \in G} gHg^{-1}$. This means that $\bigcap_{g \in G} gHg^{-1}$ is a normal closed nontrivial subgroup of G, and so $G' \subseteq \bigcap_{g \in G} gHg^{-1} \subseteq H \subseteq G'$. Hence $H = G'$ and theorem follows.

Remarks. 1) G' is topologically simple, therefore $G'' = G'$. 2) The compact group G/G' is the compact group associated with G in the sense of [1, Th. 16.1.1, pg. 296] and the canonical surjection $p: G \to G/G'$ is the canonical morphism of G [1, Th. 16.1.1, pg. 296]. In particular a bounded continuous function f on G is almost periodic iff f is G'-invariant. As π varies among all finite dimensional representations of G/G' (as π varies in $(G/G')^\sim$), $p \circ \pi$ describes all finite dimensional representations of G (all finite dimensional irreducible representations of G). 3) Obviously G'' is open in G iff G has only finitely many classes of finite dimensional irreducible representations.

Corollary 1. Let $G \in \mathcal{G}$; then the following are equivalent.

1) G is m.a.p.
2) G is topologically simple.
3) $G = G'$.

Proof. The corollary follows from Remark 2) above and the fact that G is topologically simple iff $G = G'$, that is, iff $(G/G')^\sim$ is trivial.

Corollary 2. Let G be a closed subgroup of $\text{Aut}(X)$ acting transitively on X and Ω. Let $G^+ = \{g \in G : d(x, g(x))$ is even\}. Then $G^+ \in \mathcal{G}$ is topologically simple iff G has exactly two (classes of) unitary irreducible finite dimensional representations, that is, the trivial character $(\chi(g) = 1 \text{ for every } g \in G)$ and the character χ^+ (where $\chi^+(g) = 1 \text{ for every } g \in G^+$ and $\chi^+(g) = -1 \text{ for every } g \notin G^+$).

Proof. Because G/G^+ is the cyclic group of order 2, then an elementary argument of induced representations proves that the set of irreducible finite dimensional representations of G is $\{\chi, \chi^+\}$ iff every irreducible finite dimensional representation of G^+ is trivial. Therefore Corollary 2 follows from Corollary 1.

Remarks. 1) If G acts transitively on X and Ω and it satisfies the property (P) of Tits [8], then $G^+ = G'$.

2) Let \mathbb{Q}_p be the field of the p-adic numbers; the group $\text{PGL}(2, \mathbb{Q}_p)$ can be embedded into the group of all isometries of some homogeneous tree in such a way that it acts transitively on X and Ω [7]. In this case $\text{PGL}(2, \mathbb{Q}_p)^+$ is not simple but $$(\text{PGL}(2, \mathbb{Q}_p))^+ = \text{PSL}(2, \mathbb{Q}_p) = [\text{PGL}(2, \mathbb{Q}_p), \text{PGL}(2, \mathbb{Q}_p)]$$

where $[\cdot, \cdot]$ means the commutator subgroup. The finite dimensional irreducible representations of $\text{PGL}(2, \mathbb{Q}_p)$ are in fact characters [3, Prop. 2.7, pg. 31].
3) For $G = \text{Aut}(X)$ or $G = \text{PGL}(2, \mathbb{Q}_p)$ we have that $G' = [G, G]$ and G' is open in G. This means that every finite dimensional irreducible representation of G is a character and the set of characters must be finite. For $G = \text{PGL}(2, \mathbb{Q}_p)$ this is a consequence of the fact that every open normal subgroup of $\text{PGL}(2, \mathbb{Q}_p)$ contains the group $\langle \begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix} \rangle$ (see the first part of the proof of [3, Prop. 2.7, pg. 31]).

4) Let G be a closed subgroup of $\text{Aut}(X)$ acting transitively on X and Ω, and let $\omega \in \Omega$. We define B^G_ω as the subgroup of all rotations of G such that $g(\omega) = \omega$. In [5] we consider the group B^G_ω for $G = \text{Aut}(X)$ and we prove that B^G_ω is minimally almost periodic. A curious fact is that if B^G_σ is minimally almost periodic for a general G acting transitively on X and Ω, then G^+ is topologically simple. This is a consequence of the following claim: if an open normal subgroup H of G^+ contains B^G_σ, then $H = G^+$. We prove now, briefly, the claim. Since H is normal and $B^G_\sigma \subseteq H$, it follows that $gB^G_\sigma g^{-1} = B^G_{g(\omega)} \subseteq gHg^{-1} = H$ for every $g \in G^+$. Hence $B^G_\sigma \subseteq H$ for every $\sigma \in \Omega$ because G^+ acts transitively on Ω. We recall that G^+ is the subgroup generated by all rotations of G; therefore it is enough to prove that $K_v \subseteq H$ for every $v \in X$. As observed $K_v \cap B^G_\sigma \subseteq H$ for every $v \in X$ and $\sigma \in \Omega$. Let k be in K_v and $\sigma, \sigma' \in \Omega$ such that $k(\sigma) = \sigma'$. The subgroup H in G and so $H \cap K_v$ acts transitively on Ω [4, Prop. 1, pg. 143]; therefore there exists $h \in H \cap K_v$ such that $h(\sigma') = \sigma$. This means that $hk \in B^G_\sigma \subseteq H$ and $k \in H$.

References

5. C. Nebbia, *Classification of all irreducible unitary representations of the stabilizer of the horocycles of a tree*, Israel J. Math. 70 (3) (1990), 343–351. MR 91m:22009

Dipartimento di Matematica “G. Castelnuovo”, Università di Roma “La Sapienza”, 00185 Roma, Italy
E-mail address: nebbia@mercurio.mat.uniroma1.it