A NOTE ON p-BASES OF RINGS

TOMOAKI ONO

(Communicated by Wolmer V. Vasconcelos)

Abstract. Let $R \supseteq R' \supseteq R^p$ be a tower of rings of characteristic $p > 0$. Suppose that R is a finitely presented R'-module. We give necessary and sufficient conditions for the existence of p-bases of R over R'. Next, let A be a polynomial ring $k[X_1, \ldots, X_n]$ where k is a perfect field of characteristic $p > 0$, and let B be a regular noetherian subring of A containing A^p such that $[Q(B) : Q(A^p)] = p$. Suppose that $\text{Der}_{A^p}(B)$ is a free B-module. Then, applying the above result to a tower $B \supseteq A^p \supseteq B^p$ of rings, we shall show that a polynomial of minimal degree in $B - A^p$ is a p-basis of B over A^p.

1. Preliminaries

Throughout this paper, let p be always a prime number, let R be a commutative ring with unity of characteristic p, and let R' be a subring of R containing $R^p = \{a^p \mid a \in R\}$. Then there is a canonical one-to-one correspondence between $\text{Spec} R$ and $\text{Spec} R'$ by Lemma 1 of [6]. So, for any given $p \in \text{Spec} R$, we denote by p' the corresponding element in $\text{Spec} R'$, i.e., $p' = p \cap R'$.

A subset $\{x_1, \ldots, x_t\}$ of R is said to be a p-basis of R over R' if the monomials $x_1^{e_1} \cdots x_t^{e_t}$ $(0 \leq e_i \leq p - 1)$ are linearly independent over R' and $R = R'[x_1, \ldots, x_t]$. If, for each $p \in \text{Spec} R$, there exists a p-basis of R_p over R'_p, we say that R has locally p-bases in addition to the previous condition, then the R'-algebra R is called a Galois extension of R' ([6]).

When R is a local ring, the existence of a p-basis of R over R' is studied for example in [1]. But it is not well-known whether there is a p-basis of R over R' or not, when R is not a local ring ([2]). If R has a p-basis over R', then for any $p \in \text{Spec} R$ the localization R_p at p also has a p-basis over R'_p. The converse does not hold in general. In this paper, we study a condition for the existence of a p-basis of R over R', when R has locally p-bases over R' (Theorems 2.2 and 3.2). As an example we consider the existence of a p-basis of a regular ring which is contained in a polynomial ring over a perfect field (Theorem 4.1). A special basis of the module of derivations plays a central role in our study, and we use the results of [6] frequently.

Let $\text{Der}_R(R)$ be the set of all derivations of R over R', let S be a multiplicatively closed subset of R, and let S' be $S \cap R'$. We denote by ϕ_S and τ_S the canonical
maps $R \to R_S$ and $\text{Der}_{R'}(R) \to \text{Der}_{R'}(R_S)$, respectively. In particular, when S is a multiplicatively closed subset $\{f^n\}_{n \geq 0}$ (for $f \in R$), resp. $R - p$, we denote by ϕ_f and τ_f, resp. ϕ_p and τ_p (or simply ϕ and τ), the previous canonical maps. Note that $\tau_S(D)(\phi_S(x)) = \phi_S(D(x))$ for any $x \in R$ and any $D \in \text{Der}_{R'}(R)$.

As is well-known, the following three facts hold:

(1) If R_S has a p-basis $\{x_1/s_1, ..., x_l/s_l\}$ over R'_S, then $\{\phi_S(s_1^{-1}x_1), ..., \phi_S(s_l^{-1}x_l)\}$ is a p-basis of R_S over R'_S, i.e., we can choose a p-basis of R_S over R'_S from the image $\phi(R)$.

(2) If R has a p-basis $\{x_1, ..., x_l\}$ over R', then the image $\{\phi_S(x_1), ..., \phi_S(x_l)\}$ in R_S is a p-basis of R_S over R'_S.

(3) If R has a p-basis $\{x_1, ..., x_l\}$ over R', then there exists a unique set of derivations $D_{x_1}, ..., D_{x_l}$ of R over R' such that $D_{x_i}(x_j) = \delta_{ij}$ where δ_{ij} is Kronecker’s delta. This set forms a basis for $\text{Der}_{R'}(R)$. We always denote by $D_{x_1}, ..., D_{x_l}$ such derivations which are associated with a p-basis $\{x_1, ..., x_l\}$ of R over R'.

Definition. Suppose R has locally p-bases over R'. Let $\{m\}$ be the set of all maximal ideals of R. We call $D \in \text{Der}_{R'}(R)$ the preferable derivation, if for each m there is a p-basis $\{\phi_m(x)\} \ (x \in R)$ of R_m over R'_m, such that $\phi_m(D(y))p^{-1} \in \bigoplus_{i=0}^{m-2} R'_m \phi_m(x)^i$.

Lemma 1.1. Suppose R has locally p-bases over R'. Let S be a multiplicatively closed subset of R disjoint from at least one prime ideal, and suppose R_S has a p-basis $\{\phi_S(x)\}$ over R'_S. If $D \in \text{Der}_{R'}(R)$ is preferable, then $\phi_S(D(x))p^{-1} \in \bigoplus_{i=0}^{m-2} R'_S \phi_S(x)^i$.

Proof. Let $\{p\}$ be the set of all prime ideals of R disjoint from S. The set $\{p\}$ is non-empty by the assumption. Let m be a maximal ideal containing p. Since D is preferable, there exists a p-basis $\{\phi_m(y)\} \ (y \in R)$ of R_m over R'_m, such that $\phi_m(D(y))p^{-1} \in \bigoplus_{i=0}^{m-2} R'_m \phi_m(y)^i$. We use a symbol ϕ for the canonical map $R \to R'_p$. Then, by the above fact (2), $\{\phi(y)\}$ is a p-basis of R_p over R'_p, and $\phi(D(y))p^{-1} \in \bigoplus_{i=0}^{p-2} R'_p \phi(y)^i$. Therefore we can take an element z of R_p such that $\phi(D(y))p^{-1} = D_{\phi(y)}(z)$. Since $\{D_{\phi(y)}\}$ forms a basis for $\text{Der}_{R'_p}(R_p)$ and $D_{\phi(y)}(\phi(y)) = 1$, we have $\tau_p(D) = \tau_p(D)(\phi(y))D_{\phi(y)} = \phi(D(y))D_{\phi(y)}$.

Now, the fact (2) says that $\{\phi(x)\}$ is a p-basis of R_p over R'_p. Hence, there is a unique basis $\{D_{\phi(x)}\}$ of $\text{Der}_{R'_p}(R_p)$ such that $D_{\phi(x)}(\phi(x)) = 1$, and $D_{\phi(y)} = D_{\phi(y)}(\phi(x))D_{\phi(x)}$. From these facts, we get the following equations:

$$
\phi(D(x))p^{-1} = \{\tau_p(D)(\phi(x))\}p^{-1} = \{\phi(D(y))D_{\phi(y)}(\phi(x))\}p^{-1} = D_{\phi(y)}(z)D_{\phi(y)}(\phi(x))p^{-1} = \{D_{\phi(y)}(\phi(x))D_{\phi(y)}(z)\}D_{\phi(y)}(\phi(x))p^{-1} = D_{\phi(y)}(\phi(x))pD_{\phi(y)}(z).
$$

Thus $\phi(D(x))p^{-1}$ is contained in $\bigoplus_{i=0}^{p-2} R'_p \phi(x)^i$. When we write $\phi_S(D(x))p^{-1}$ as $\sum_{i=0}^{p-1} c_i/s_i \phi_S(x)^i$ ($c_i \in R', s_i \in S'$), we can find for each p an element t of $R' - p'$ such that $c_{p-1}t = 0$, i.e., $\phi(c_{p-1}) = 0$. This implies that $\phi_S(c_{p-1}) = 0$. Therefore $\phi_S(D(x))p^{-1} \in \bigoplus_{i=0}^{p-2} R'_S \phi_S(x)^i$. \qed
Lemma 1.2. Suppose R is reduced and has locally p-bases over R'. Let $\{q\}$ be the set of all minimal prime ideals belonging to the zero ideal (0), and let $\{\phi_q(x)\}$ $(x \in R)$ be a p-basis of R_q over R_q'. If $D \in \text{Der}_{R'}(R)$ satisfies that for each q

$$\phi_q(D(x))^{p-1} \in \bigoplus_{i=0}^{p-2} R_q' \phi_q(x)^i,$$

then D is preferable.

Proof. Let m be a maximal ideal of R, and let $\{\phi_m(y)\}$ $(y \in R)$ be a p-basis of R_m over R_m'. By the same argument as in the proof of Lemma 1.1, we see that $\phi_q(D(y))^{p-1} \in \bigoplus_{i=0}^{p-2} R_q' \phi_q(y)^i$ for each q contained in m. Writing $\phi_m(D(y))^{p-1}$ as $\sum_{i=0}^{p-1}(c_i/s_i)\phi_m(y)^i$ ($c_i \in R'$, $s_i \in R' - m'$), there exists an element t of $R' - q'$ such that $c_{p-1}t = 0$. This means that $c_{p-1} \in \bigcap_{i \in A} q_i$. Since R is reduced, the localization $R_{m'}$ of R' is also, i.e., the nilradical $\bigcap_{i \in A} q_i R_{m'}$ is equal to (0). It follows that $c_{p-1}/s_{p-1} = 0$. Thus D is preferable.

2. p-Bases which consist of one element

Lemma 2.1. Let D be a derivation of R. Then, for any $a \in R$ we have

$$(aD)^{p-1}(a) = -aD^{p-1}(a^{p-1}).$$

Proof. To prove this assertion, we make use of the proof of the Hochschild formula (see Theorem 25.5 of [4]). By induction, for $k \geq 1$ we get

$$(aD)^k = a^kD^k + \sum_{i=2}^{k-1} b_{k,i}D^i + (aD)^{k-1}(a)D,$$

where $b_{k,i} = f_{k,i}(a, D(a), D^2(a), ..., D^{k-i}(a))$ ($2 \leq i \leq p - 1$), more precisely the $f_{k,i}$ are polynomials with coefficients in $\mathbb{Z}/(p)$ not depending on R, on a or on D.

Then according to the proof of Theorem 25.5 of [4], the polynomial $f_{p,i}$ is equal to 0 for any i. On the other hand, the following expansion is obtained:

$$(aD)^p = a^pD^p + a\{D(a^{p-1}) + b_{p-1,p-2}D^{p-1}\}D + \sum_{i=3}^{p-2} a\{D(b_{p-1,i}) + b_{p-1,i-1}\}D^i + a\{D(b_{p-1,2}) + (aD)^{p-2}(a)\}D^2 + (aD)^{p-1}(a)D.$$

Hence, we get the following recurrence formula:

$$\begin{cases}
D(a^{p-1}) + b_{p-1,p-2} = 0, \\
D(b_{p-1,i}) + b_{p-1,i-1} = 0 \quad (3 \leq i \leq p - 2), \\
D(b_{p-1,2}) + (aD)^{p-2}(a) = 0.
\end{cases}$$

It follows that

$$(aD)^{p-2}(a) = -D(b_{p-1,2}) = -D(-D(b_{p-1,3})) = \ldots = (-1)^{p-3}D^{p-3}(-D(a^{p-1})) = (-1)^{p-2}D^{p-2}(a^{p-1}).$$

Consequently, we have $(aD)^{p-1}(a) = -aD^{p-1}(a^{p-1})$.

\[\square\]
Theorem 2.2. Suppose R is finitely presented as an R'-module. Then the following conditions are equivalent:

1. R has a p-basis over R' which consists of one element.
2. R has locally p-bases over R' and $\text{Der}_{R'}(R)$ has a basis D such that $D^p = 0$.
3. R has locally p-bases over R' and $\text{Der}_{R'}(R)$ has a basis which consists of one preferable derivation.

Proof. (1) \Rightarrow (2). This assertion is obvious.

(2) \Rightarrow (3). Let m be a maximal ideal of R. Since R is a finitely presented R'-module, the module $\text{Der}_{R'}(R_m)$ is canonically isomorphic to $\text{Der}_{R'}(R) \otimes_R R_m$. This implies that $\text{Der}_{R'}(R_m)$ is a free R_m-module with rank 1. So any p-basis of R_m over R'_m consists of one element. Let $\phi(x)$ ($x \in R$) be a p-basis of R_m over R'_m, where ϕ expresses the canonical map $R \longrightarrow R_m$. For the canonical map τ_m, note that $\tau_m(D^p) = \tau_m(D)^p$. Since $D_{\phi(x)}$ forms a basis for $\text{Der}_{R'_m}(R_m)$, we have

$$\tau_m(D) = \phi(D(x))D_{\phi(x)} \quad \text{and} \quad \tau_m(D^p) = \phi(D^p(x))D_{\phi(x)}.$$

By virtue of Lemma 2.1, we have

$$\phi(D^p(x)) = \{\phi(D(x))D_{\phi(x)}\}^{p-1}(\phi(D(x))) = -\phi(D(x))D_{\phi(x)}^{p-1}(\phi(D(x))^{p-1}).$$

Hence, the following equation is obtained:

$$\tau_m(D^p) = -\phi(D(x))D_{\phi(x)}^{p-1}(\phi(D(x))^{p-1})D_{\phi(x)}.$$

Now, $\phi(D(x))$ is a unit in R_m, because $\tau_m(D)$ forms a basis for $\text{Der}_{R'_m}(R_m)$. From this $D^p = 0$ implies $D_{\phi(x)}^{p-1}(\phi(D(x))^{p-1}) = 0$. Thus D is preferable.

(3) \Rightarrow (1). Let $\{p\}$ be the set of all prime ideals of R, and for each p let $\{\phi(x)\}$ ($x \in R$) be a p-basis of R_p over R'_p, where ϕ is the canonical map $R \longrightarrow R_p$. Let D be a preferable derivation which is a basis of $\text{Der}_{R'}(R)$. Since R is a finitely presented R'-module, $\tau_m(D)$ forms a basis for $\text{Der}_{R'_m}(R_m)$ as in the proof of (2) \Rightarrow (3), so $D(x) \notin p$. We claim that $\text{Ker} D = R'$. Indeed, R is a Galois extension of R', and the claim follows from Theorem 9 (2) of [6]. Put $f = D(x)^p$ and $D_{(f)} = \{D(x)^{p-1}/f\} \tau_f(D)$. Then $D_{(f)}$ is an element of $\text{Der}_{R'_m}(R_f)$ such that $\text{Ker} D_{(f)} = R'_f$ and $D_{(f)}(\phi_f(x)) = 1$. Moreover, $\tau_{f,p}(D_{(f)}) = (\tau_{f,p}(D_{(f)}))^{p} = (\phi_{(f)}(p))^{p} = 0$ for any prime ideal p which does not contain f, where $\tau_{f,p}$ is the canonical map $\text{Der}_{R'_m}(R_f) \longrightarrow \text{Der}_{R'_p}(R_p)$. By Theorem 27.3 (i) of [4], $\{\phi_f(x)\}$ is a p-basis of R_f over R'_f.

Now, since $\text{Spec} R'$ is quasi-compact, we can take a finite subset $\{f_1, \ldots, f_m\}$ of $\{f\}_{p \in \text{Spec} R}$ and a finite subset $\{g_1, \ldots, g_m\}$ of R' such that $\sum_{j=1}^{m} f_j g_j = 1$. Denote by x_j the element x associated with each f_j. Since D is preferable, by Lemma 1.1 we have $\phi_{f_j}(D(x_j))^{p-1} = \bigoplus_{i=0}^{p-2} R'_f \phi_{f_j}(x_j)^i$ for each j. Hence, we can write $\phi_{f_j}(D(x_j))^{p-1}$ as $\sum_{i=0}^{p-2} (i+1)c_{ij}x_j^i$, where c_{ij} $(0 \leq i \leq p-1, 1 \leq j \leq m)$ are elements of R' and n_{ij} $(1 \leq j \leq m)$ are non-negative integers. There exists a positive integer e such that $p^e \geq n_{ij} + 1$ and $f_j^{p^e-n_{ij}} \{f_j^{n_{ij}}D(x_j)^{p-1} - \sum_{i=0}^{p-2}(i+1)c_{ij}x_j^i\} = 0$.
for all j. Here, put $z = \sum_{j=1}^{m} g_j^p (z^p - n_j^{-1} c_{ij} x_j^{i+1})$. Then we have

$$D(z) = \sum_{j=1}^{m} g_j^p \left(\sum_{i=0}^{p-2} (i+1) f_j^p x_j^i \right) D(x_j)$$

$$= \sum_{j=1}^{m} g_j^p (f_j^p - 1) D(x_j)$$

$$= \sum_{j=1}^{m} f_j^p g_j^p = 1.$$

Now, we shall show that $\{z\}$ is a p-basis of R over R'. According to Theorem 27.3 (i) of [4], nothing remains but to show $D^p = 0$. Since D forms a basis for $\text{Der}_{R'}(R)$, the derivation D^p is equal to aD ($a \in R$). Clearly, $a = aD(z) = D^p(z) = 0$. Thus $D^p = 0$. Therefore R has the p-basis $\{z\}$ over R'.

Corollary 2.3. Suppose that R and R' are regular noetherian rings, and suppose that R is finitely generated as an R'-module. Then the following conditions are equivalent:

1. R has a p-basis over R' which consists of one element.
2. $\text{Der}_{R'}(R)$ has a basis D such that $D^p = 0$.
3. $\text{Der}_{R'}(R)$ has a basis which consists of one preferable derivation.

Proof. By the Theorem of [1] (cf. [3], Theorem 15.7), R has locally p-bases over R'. Therefore this is an immediate consequence of Theorem 2.2. □

3. p-bases which consist of l elements

Lemma 3.1. Suppose that R is a Galois extension of R'. Let D be a derivation of R over R', and suppose that $D^p = 0$ and the R-module RD is a direct summand of $\text{Der}_{R'}(R)$. Then the following holds:

1. R is a Galois extension of $\text{Ker} D$.
2. $\text{Ker} D$ is a Galois extension of R'.
3. $RD = \text{Der}_{R'}(R)$.

Proof. For any $a, b \in R$, we have

$$[aD, bD] = \{aD(b) - bD(a)\} D,$$

and by the Hochschild formula

$$(aD)^p = a^p D^p + (aD)^{p-1} (a) D = (aD)^{p-1} (a) D.$$

Thus $[aD, bD]$ and $(aD)^p$ are contained in RD. It follows that RD is a p-Lie subalgebra of $\text{Der}_{R'}(R)$. Theorem 12 of [6] says that R is a Galois extension of $\text{Ker} D$ and $RD = \text{Der}_{R'}(R)$. Therefore $\text{Ker} D$ is a Galois extension of R' by Theorem 11 of [6]. □

Theorem 3.2. Let l be an integer greater than 1. Suppose R is finitely presented as an R'-module. Then the following conditions are equivalent:

1. R has a p-basis over R' which consists of l elements.
2. R has locally p-bases over R' and $\text{Der}_{R'}(R)$ has a basis $\{D_1, \ldots, D_l\}$ such that $D_i^p = 0$ and $[D_i, D_j] = 0$ for any $i, j = 1, 2, \ldots, l$.

Proof. (1) ⇒ (2). This immediately follows from fact (3) in §1.
(2) ⇒ (1). Let R_1 be the kernel of the derivation D_1 which is an R'-algebra. Then, by Lemma 3.1 R is a Galois extension of R_1 and $RD_1 = Der_{R_1}(R)$. Hence, there exists a p-basis \{x_i\} for R over R_1 by Theorem 2.2.

Now, in order to find the other elements which constitute a p-basis of R over R', we need to show that $\{D_i|_{R_1}\}_{i=2,...,l}$ forms a basis for $Der_{R_1}(R)$. First of all, we claim that $D_i|_{R_1} \in Der_{R_1}(R_1)$ and $D_i|_{R_1} \neq 0$ for any $i \geq 2$. The first assertion follows from $[D_1, D_i] = 0$. To show the second assertion, assume $R_1 \subseteq Ker D_i$. Then $D_i \in Der_{R_1}(R) = RD_1$. This contradicts the fact that $\{D_1, \ldots, D_l\}$ is a basis of $Der_{R_1}(R)$. Thus $D_i|_{R_1} \neq 0$. Let m be a maximal ideal of R and let n be the maximal ideal $m \cap R_1$ of R_1. Since R_1 is a Galois extension of R' by Lemma 3.1, there is a subset $\{y_2, \ldots, y_l\}$ of R_{ln} which is a p-basis of R_{ln} over R'_{ln}. Obviously, $\{\phi_m(x_1), y_2, \ldots, y_l\}$ is a p-basis of R_m over R'_{m}. Let $D_{\phi_m(x_1)}, D_{y_2}, \ldots, D_{y_l}$ be the derivations of R_m over R'_{m} associated with this p-basis (see fact (3) in §1). Denote by D_j' the derivation $D_{y_j}|_{R_1n}$ of R_1 over R'_{m}. Then $\tau_n(D_i|_{R_1})$ is written as $\sum_{i=2}^l a_{ij} D_j'$ for each $i \geq 2$ where $a_{ij} \in R_{1n}$, because $\{D_j'\}_{j=2,...,l}$ forms a basis for $Der_{R'_{ln}}(R_{ln})$. Since R is finitely presented as an R'-module, the module $Der_{R'_{m}}(R_m)$ is isomorphic to $Der_{R'}(R) \otimes_R R_m$. Hence, $\{\tau_n(D_1), \ldots, \tau_n(D_l)\}$ forms a basis for $Der_{R'_{m}}(R_m)$, so the derivation D_{y_j} is expressed as $\sum_{i=1}^l b_{ji} \tau_n(D_i)$ for each $j \geq 2$ where $b_{ji} \in R_m$. For each $j \geq 2$ we have

$$D_j' = \sum_{i=1}^l b_{ji} \tau_n(D_i)|_{R_1n} = \sum_{i=2}^l b_{ji} \tau_n(D_i|_{R_1}).$$

These show that the matrix $[b_{ji}]_{2 \leq i, j \leq l}$ is equal to the inverse matrix of $[a_{ij}]_{2 \leq i, j \leq l}$, i.e., $b_{ji} \in R_{1n}$. Thus, for any maximal ideal n of R_1, $\{\tau_n(D_i|_{R_1})\}_{i=2,...,l}$ is a basis of $Der_{R'_{m}}(R_{ln})$. This implies that $\{D_i|_{R_1}\}_{i=2,...,l}$ forms a basis for $Der_{R_1}(R_1)$.

Set $R_h = Ker D_1 \cap \cdots \cap Ker D_h$ for $h = 2, \ldots, l$. Repeating the previous argument in the situation that $R_{h-1} \supseteq R_h \supseteq R'$, we can show that there exists a p-basis $\{x_h\}$ of R_{h-1} over R_h inductively. Then Theorem 9 (2) of [6] says that $R_l = R'$. In conclusion, $\{x_1, \ldots, x_l\}$ is a p-basis of R over R'.

\[\square\]

Corollary 3.3. Let l be an integer greater than 1. Suppose that R and R' are regular noetherian rings, and suppose that R is finitely generated as an R'-module. Then the following are equivalent:

1. R has a p-basis over R' which consists of l elements.
2. $Der_{R'}(R)$ has a basis $\{D_1, \ldots, D_l\}$ such that $D_i^p = 0$ and $[D_i, D_j] = 0$ for any $i, j = 1, 2, \ldots, l$.

Proof. By virtue of the Theorem of [1], R has locally p-bases over R'. Clearly, the assertion holds by Theorem 3.2. \[\square\]

4. **p-Bases of Polynomial Rings**

In this section, when R is an integral domain, $Q(R)$ denotes the field of fractions of R. The next theorem is an analogy of the result of [2].

Theorem 4.1. Let k be a perfect field of characteristic $p > 0$. Let A be a polynomial ring $k[X_1, \ldots, X_n]$, and let B be a regular noetherian subring of A containing A^p such that $[Q(B) : Q(A^p)] = p$. Suppose that $Der_{A^p}(B)$ is a free B-module. If F
is a polynomial of minimal degree (in X_1, \ldots, X_n) in $B - A^p$ which has no terms of elements in A^p, then $\{F\}$ is a p-basis of B over A^p.

Proof. Since A is finitely generated as an A^p-module and B is noetherian, A is finitely presented as a B-module. By the Theorem of [1], A is a Galois extension of A^p, and B is also by Theorem 11 (1) of [6].

Set $H = \{D \in \text{Der}_{A^p}(A) | D(B) \subseteq B\}$. Then, by Theorem 11 (2) of [6], there is a B-module homomorphism $\Phi : \text{Der}_{A^p}(B) \rightarrow H$ which, followed by the restriction map $H \rightarrow \text{Der}_{A^p}(B)$ given by $D \rightarrow D|_B$, is the identity map on $\text{Der}_{A^p}(B)$. We write $\text{Der}_{A^p}(B)$ for the image of $\text{Der}_{A^p}(B)$ in H. Theorem 11 (3) of [6] says that

\[
\text{Der}_{A^p}(A) = \text{Der}_B(A) \oplus A \text{Der}_{A^p}(B).
\]

We see that $\text{rank}_B \text{Der}_{A^p}(B) = 1$, because $[Q(B) : Q(A^p)] = p$. Let D be a basis for $\text{Der}_{A^p}(B)$, and put $\tilde{D} = \Phi(D)$. Obviously $\tilde{D}|_B = D$, so \tilde{D} generates $\text{Der}_{A^p}(B)$. From (\star), there are a derivation $D_i \in \text{Der}_B(A)$ and an element $a_i \in A$ such that

\[
\frac{\partial}{\partial X_i} = D_i + a_i \tilde{D} \quad \text{for } i = 1, \ldots, n.
\]

Hence, for each i we have

\[
\frac{\partial F}{\partial X_i} = a_i \tilde{D}(F).
\]

Now, $F \notin A^p$ implies $a_j \neq 0$ for some j. It follows that

\[(\dagger) \quad \text{deg} \tilde{D}(F) \leq \text{deg} \frac{\partial F}{\partial X_j} < \text{deg} F.\]

On the other hand, since $F \in B - A^p$ and $\text{Ker} D = A^p$ (see [6], Theorem 9 (2)), we obtain

\[(\ddagger) \quad \tilde{D}(F) = \tilde{D}|_B(F) = D(F) \in B - \{0\}.
\]

Since the degree of F is minimal in $B - A^p$, the above (\dagger) and (\ddagger) yield that

\[(\ast) \quad D(F) \in A^p - \{0\}.
\]

Let t ($t \in B$) be a p-basis of $Q(B)$ over $Q(A^p)$, and let D_t be a derivation of $Q(B)$ over $Q(A^p)$ such that $D_t(t) = 1$. Then, since D_t is a basis of $\text{Der}_{Q(A^p)}(Q(B))$, the derivation D is equal to $D(t)D_t$, where D is regarded as the derivation of $Q(B)$ over $Q(A^p)$ by the canonical inclusion map $\text{Der}_{A^p}(B) \rightarrow \text{Der}_{Q(A^p)}(Q(B))$. So we have

\[
D(t)^{p-1} = \frac{1}{D(F)} D(t)^p D_t(F) \in \bigoplus_{i=0}^{p-2} Q(A^p)t^i.
\]

Hence, D is preferable by Lemma 1.2. According to the proof of Theorem 2.2, there exists a p-basis $\{F'\}$ of B over A^p such that $D(F') = 1$. We may assume that F' has no terms of elements in A^p. Writing F as $\sum_{i=0}^{p-1} a_pF^i$ ($a_i \in A$), (\ast) implies that $a_2 = a_3 = \cdots = a_{p-1} = 0$. Considering the assumptions for the degree and the terms of F, we have $a_0 = 0$ and $a_1 \in k - \{0\}$. Consequently, $\{F\}$ is a p-basis of B over A^p.

Remark. The following assertions immediately follow from the proof of Theorem 4.1.

1. F is unique up to multiplication by elements of $k - \{0\}$.
(2) Any p-basis of B over A^p can be uniquely expressed as $cF + a^p$ ($c \in k - \{0\}$, $a \in A$).

Corollary 4.2 (Kimura-Niitsuma). Let k and A be as in Theorem 4.1. Let B be a polynomial ring $k[Y_1, \ldots, Y_n]$ which is a subring of A containing A^p such that $[Q(B) : Q(A^p)] = p$ (resp. $[Q(A) : Q(B)] = p$). Then B has a p-basis over A^p (resp. A has a p-basis over B).

Proof. Suppose $[Q(B) : Q(A^p)] = p$. Recall that B is a Galois extension of A^p (see the proof of Theorem 4.1). By Theorem 9 of [6] $\text{Der}_{A^p}(B)$ is finitely generated and projective as a B-module. By virtue of Quillen’s result of [5], $\text{Der}_{A^p}(B)$ is free. Therefore the assertion holds by Theorem 4.1.

Next, suppose $[Q(A) : Q(B)] = p$. Then by a similar argument we can show that there is a p-basis $\{F^p\}$ ($F \in A$) of A^p over B^p. Obviously, $\{F\}$ is a p-basis of A over B.

Remark. In 1990, the above result was first announced by T. Kimura and H. Niitsuma.

References

Tokyo Metropolitan College of Aeronautical Engineering 8-52-1, **Minami-senju, Arakawa-ku, Tokyo 116-0003, Japan**

E-mail address: tono@kouku-k.ac.jp