On compact subsets in coechelon spaces of infinite order
HTML articles powered by AMS MathViewer
- by Angela A. Albanese
- Proc. Amer. Math. Soc. 128 (2000), 583-588
- DOI: https://doi.org/10.1090/S0002-9939-99-05039-X
- Published electronically: July 6, 1999
- PDF | Request permission
Abstract:
For coechelon spaces $k_{\infty }(v)$ of infinite order it is proved that every compact subset of $k_{\infty }(v)$ is contained in a closed absolutely convex hull of some null sequence if and only if the matrix $v$ is regularly decreasing.References
- Klaus-D. Bierstedt, Reinhold G. Meise, and William H. Summers, Köthe sets and Köthe sequence spaces, Functional analysis, holomorphy and approximation theory (Rio de Janeiro, 1980) North-Holland Math. Stud., vol. 71, North-Holland, Amsterdam-New York, 1982, pp. 27–91. MR 691159
- B. Cascales and J. Orihuela, Metrizability of precompact subsets in $(LF)$-spaces, Proc. Roy. Soc. Edinburgh Sect. A 103 (1986), no. 3-4, 293–299. MR 866842, DOI 10.1017/S0308210500018941
- S. Dierolf and P. Domański, Factorization of Montel operators, Studia Math. 107 (1993), no. 1, 15–32. MR 1239423, DOI 10.4064/sm-107-1-15-32
- Susanne Dierolf and PawełDomański, Null sequences in coechelon spaces, Math. Nachr. 184 (1997), 167–176. MR 1439173, DOI 10.1002/mana.19971840107
- S. Dierolf and P. Domański, Bornological spaces of null sequences, Arch. Math. (Basel) 65 (1995), no. 1, 46–52. MR 1336223, DOI 10.1007/BF01196579
- P. Domański, On Spaces of Continuous Functions with Values in Coechelon Spaces, to appear in Rev. Real Acad. Sci. Exactas, Madrid.
- Hans Jarchow, Locally convex spaces, Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1981. MR 632257
- Hermann Neus, Über die Regularitätsbegriffe induktiver lokalkonvexer Sequenzen, Manuscripta Math. 25 (1978), no. 2, 135–145 (German, with English summary). MR 482036, DOI 10.1007/BF01168605
- Pedro Pérez Carreras and José Bonet, Barrelled locally convex spaces, North-Holland Mathematics Studies, vol. 131, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 113. MR 880207
- Jean Schmets, Spaces of vector-valued continuous functions, Lecture Notes in Mathematics, vol. 1003, Springer-Verlag, Berlin, 1983. MR 709938, DOI 10.1007/BFb0061450
- Manuel Valdivia, Topics in locally convex spaces, Notas de Matemática [Mathematical Notes], vol. 85, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 671092
Bibliographic Information
- Angela A. Albanese
- Affiliation: Dipartimento di Matematica “E. De Giorgi”, Università di Lecce, C.P. 193, Via per Arnesano, 73100, Lecce, Italy
- Email: albanese@ilenic.unile.it
- Received by editor(s): August 12, 1997
- Received by editor(s) in revised form: April 14, 1998
- Published electronically: July 6, 1999
- Additional Notes: Research partially supported by the Italian MURST
- Communicated by: Dale Alspach
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 583-588
- MSC (1991): Primary 46A45; Secondary 46A50
- DOI: https://doi.org/10.1090/S0002-9939-99-05039-X
- MathSciNet review: 1625764