Invertibility in infinite-dimensional spaces
HTML articles powered by AMS MathViewer
- by Chia-Chuan Tseng and Ngai-Ching Wong
- Proc. Amer. Math. Soc. 128 (2000), 573-581
- DOI: https://doi.org/10.1090/S0002-9939-99-05076-5
- Published electronically: July 6, 1999
- PDF | Request permission
Abstract:
An interesting result of Doyle and Hocking states that a topological $n$-manifold is invertible if and only if it is a homeomorphic image of the $n$-sphere $S^n$. We shall prove that the sphere of any infinite-dimensional normed space is invertible. We shall also discuss the invertibility of other infinite-dimensional objects as well as an infinite-dimensional version of the Doyle-Hocking theorem.References
- Czesław Bessaga and Tadeusz Dobrowolski, Affine and homeomorphic embeddings into $l^2$, Proc. Amer. Math. Soc. 125 (1997), no. 1, 259–268. MR 1389505, DOI 10.1090/S0002-9939-97-03832-X
- Czeslaw Bessaga and Victor Klee, Two topological properties of topological linear spaces, Israel J. Math. 2 (1964), 211–220. MR 180825, DOI 10.1007/BF02759736
- Czesław Bessaga and Aleksander Pełczyński, Selected topics in infinite-dimensional topology, Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58], PWN—Polish Scientific Publishers, Warsaw, 1975. MR 0478168
- Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113–115. MR 117694, DOI 10.1090/S0002-9904-1960-10420-X
- Harry Corson and Victor Klee, Topological classification of convex sets, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 37–51. MR 0161119
- T. Dobrowolski and H. Toruńczyk, Separable complete ANRs admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), no. 3, 229–235. MR 623731, DOI 10.1016/0166-8641(81)90001-8
- Tadeusz Dobrowolski, Every infinite-dimensional Hilbert space is real-analytically isomorphic with its unit sphere, J. Funct. Anal. 134 (1995), no. 2, 350–362. MR 1363804, DOI 10.1006/jfan.1995.1149
- P. H. Doyle and J. G. Hocking, A characterization of Euclidean $n$-space, Michigan Math. J. 7 (1960), 199–200. MR 121781
- P. H. Doyle and J. G. Hocking, Invertible spaces, Amer. Math. Monthly 68 (1961), 959–965. MR 131864, DOI 10.2307/2311802
- William J. Gray, On the metrizability of invertible spaces, Amer. Math. Monthly 71 (1964), 533–534. MR 162225, DOI 10.2307/2312594
- David W. Henderson, Open subsets of Hilbert space, Compositio Math. 21 (1969), 312–318. MR 251748
- David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Topology 9 (1970), 25–33. MR 250342, DOI 10.1016/0040-9383(70)90046-7
- S. K. Hildebrand and R. L. Poe, The separation axioms for invertible spaces, Amer. Math. Monthly 75 (1968), 391–392. MR 226581, DOI 10.2307/2313431
- Victor Klee, Topological equivalence of a Banach space with its unit cell, Bull. Amer. Math. Soc. 67 (1961), 286–290. MR 125431, DOI 10.1090/S0002-9904-1961-10589-2
- Norman Levine, Some remarks on invertible spaces, Amer. Math. Monthly 70 (1963), 181–183. MR 146802, DOI 10.2307/2312889
- Paul E. Long, Larry L. Herrington, and Dragan S. Janković, Almost-invertible spaces, Bull. Korean Math. Soc. 23 (1986), no. 2, 91–102. MR 888219
- Jan van Mill, Domain invariance in infinite-dimensional linear spaces, Proc. Amer. Math. Soc. 101 (1987), no. 1, 173–180. MR 897091, DOI 10.1090/S0002-9939-1987-0897091-4
- S. A. Naimpally, Function spaces of invertible spaces, Amer. Math. Monthly 73 (1966), 513–515. MR 195064, DOI 10.2307/2315476
- H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), no. 3, 247–262. MR 611763, DOI 10.4064/fm-111-3-247-262
- H. Toruńczyk, A correction of two papers concerning Hilbert manifolds: “Concerning locally homotopy negligible sets and characterization of $l_2$-manifolds” [Fund. Math. 101 (1978), no. 2, 93–110; MR0518344 (80g:57019)] and “Characterizing Hilbert space topology” [ibid. 111 (1981), no. 3, 247–262; MR0611763 (82i:57016)], Fund. Math. 125 (1985), no. 1, 89–93. MR 813992, DOI 10.4064/fm-125-1-89-93
Bibliographic Information
- Chia-Chuan Tseng
- Affiliation: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, Republic of China
- Ngai-Ching Wong
- Affiliation: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, Republic of China
- Email: wong@math.nsysu.edu.tw
- Received by editor(s): June 20, 1997
- Received by editor(s) in revised form: April 14, 1998
- Published electronically: July 6, 1999
- Additional Notes: This work was partially supported by the National Science Council of Republic of China. Grant Number: NSC 83-0208-M-110-0171, 87-2115-M-110-002.
- Communicated by: Dale Alspach
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 573-581
- MSC (1991): Primary 46B20, 57N20, 57N50
- DOI: https://doi.org/10.1090/S0002-9939-99-05076-5
- MathSciNet review: 1628416