KD_∞ IS A CS-ALGEBRA

S. K. JAIN, P. KANWAR, S. MALIK, AND J. B. SRIVASTAVA

(Communicated by Ken Goodearl)

Abstract. In this paper, it is shown that the group algebra KD_∞ is right CS if and only if $\text{char}(K) \neq 2$. Moreover, when $\text{char}(K) \neq 2$, then KD_∞ is also CS as a module over its center.

1. Introduction

Rings whose complement right ideals are direct summands are called right CS-rings. The class of CS-rings includes selfinjective rings, continuous rings etc. and have been of interest to many authors. However, there is hardly any literature on CS-group algebras. It is well known that the group algebra KG, where K is a field, is selfinjective if and only if G is a finite group. But the group algebra KG may be CS without the finiteness condition on the group G. For example if G is a torsion-free solvable-by-finite group, then KG is an Ore domain and hence is a CS-algebra. On the other hand if G is a finite group, then the group ring RG over the ring $R = M_n(Z)$ is not CS for any $n \geq 1$. It is, therefore, of interest to study when a given group algebra is CS. In this paper we study the group algebra $S = KD_\infty$ over a field K for its being CS or not. It is proved that S is a right CS-algebra if and only if $\text{char}(K) \neq 2$ (Theorem 3.6). It is further shown that the center $Z(S)$ of S is a Dedekind domain (Lemma 3.8) and that S is also a CS-module over $Z(S)$ (Theorem 3.9).

2. Notation and preliminaries

Throughout, unless otherwise stated, K will denote a field and D_∞, the infinite dihedral group, that is, the group generated by two elements a and b where a is of infinite order, b is of order 2 and $ab = ba^{-1}$. A module will always mean a right unital module. A nonzero submodule N of a module M is said to be essential in M, denoted by $N \subset_e M$, if, for every nonzero submodule L of M, $L \cap N \neq 0$. N is called closed in M if N has no proper essential extensions in M. A module M is said to be CS if every nonzero submodule of M is essential in a summand of M, or equivalently, if every closed submodule of M is a summand of M. CS-modules are also commonly known as extending modules ([1]). A ring R is called right CS if it is CS as a right module over itself.
If A is an algebra over a ring R, then an element $u \in A$ is called integral over R if it satisfies a polynomial equation with coefficients in R and leading coefficient 1. A is called integral if all its elements are integral.

3. Group ring KD_∞

Throughout this section, S will denote the group algebra KD_∞, and R will denote the group algebra KA where $A = \langle a \rangle$. It is well known that KA is a PID ([5], Exercise 2, p.28). Also, by ([6], Theorem 5.1 and [3], Proposition 9, p.165), S is a prime PI-ring. We begin with some lemmas which will be useful to prove our main result. Our first lemma is well known. We state it here without proof for convenience.

Lemma 3.1 ([1], Corollary 12.8). For a commutative domain R, the following are equivalent:

(a) R is a Prüfer domain.
(b) $(R \oplus R)_{R}$ is a CS-module.

Lemma 3.2. S is CS as a right R-module.

Proof. Since $S = R \oplus Rb \simeq R \times R$ and R is a Prüfer domain, the result follows by Lemma 3.1.

Lemma 3.3. If $\text{char}(K) \neq 2$ and if U is a right ideal of S such that $S_R = U_R \oplus X_R$ for some R-submodule X of the right R-module S_R, then there exists a right ideal V of S such that $S = U \oplus V$.

Proof. Let π_1, π_2 be the projections of S_R onto U_R and X_R respectively. Define $\gamma : S \to S$ by $\gamma(s) = \frac{1}{2}[\pi_2(s) + \pi_2(sb)b]$. Since $\text{char}(K) \neq 2$, γ is well-defined. Clearly, $\gamma(s_1 + s_2) = \gamma(s_1) + \gamma(s_2)$. Also,

$$
\gamma(sa) = \frac{1}{2}[\pi_2(sa) + \pi_2(sab)b] = \frac{1}{2}[\pi_2(s)a + \pi_2(sba^{-1})b] \\
= \frac{1}{2}[\pi_2(s)a + \pi_2(sb)a^{-1}b] = \frac{1}{2}[\pi_2(s)a + \pi_2(sb)ba] = \gamma(sa).
$$

Similarly, $\gamma(sb) = \gamma(sb)$. Thus $\gamma \in \text{Hom}_S(S, S)$. Let $V = \gamma(S)$. Then V is a right ideal of S. We will prove that $S = U \oplus V$. So, let $s \in S$. Write $s = (s - \gamma(s)) + \gamma(s)$. Since

$$
s - \gamma(s) = s - \frac{1}{2}[\pi_2(s) + \pi_2(sb)b] = \frac{1}{2}[(s - \pi_2(s)) + (s - \pi_2(sb)b)] \\
= \frac{1}{2}[(s - \pi_2(s)) + (sb - \pi_2(sb))b] = \frac{1}{2}[\pi_1(s) + \pi_1(sb)b],
$$

and U is a right ideal of S, we have $s - \gamma(s) \in U$. Thus $S = U \oplus V$. Also since for every $s \in S$, $s - \gamma(s) \in U$, we have $\gamma(s - \gamma(s)) = 0$, that is, $\gamma(s) = \gamma^2(s)$ for every $s \in S$.

To prove $U \cap V = (0)$, let $x \in U \cap V$. Then $x = \gamma(s)$ for some $s \in S$ and $\gamma(x) = 0$. Thus $\gamma^2(s) = 0$ and consequently, $x = \gamma(s) = \gamma^2(s) = 0$, as desired.

Lemma 3.4. If U is a closed right ideal of S, then U is a closed submodule of the right R-module S_R.

Proof. Suppose \(x \in cl(U_R) \), the closure of \(U_R \) in \(S_R \). Then \(x \in S \) and \(xE \subset U \) for some essential right ideal \(E \) of \(R \). Consequently, \(x(ES) \subset US \subset U \). Also \(ES \) is an essential right ideal of \(S \) ([5], Exercise 27, p. 467). Thus \(x \in cl(U_S) = U \), because \(U \) is a closed right ideal of \(S \). This completes the proof.

Lemma 3.5. If \(char(K) = 2 \), then \(S \) has no nontrivial idempotents.

Proof. For \(\alpha = \sum k_i a_i \in R \), let \(\alpha^* = \sum k_i a_i^{-1} \). Since \(ab = ba^{-1} \) for every \(a \in R \), \(ab = ba^* \) for every \(a \in R \). Now if \(\alpha + b \beta \in S \) is a nontrivial idempotent in \(S \), then \(ab = ba^* \) and \((\alpha + b \beta) \beta = \alpha + b \beta \) we get \(\alpha^2 + \beta^2 = (\alpha + b \beta)(\alpha^* + b \beta) = \alpha + b \beta \). Thus \(\alpha^2 + \beta^2 = \alpha + \beta \alpha + \beta = \beta \). Since \(R \) is a PID and \(\alpha + b \beta \) is an ideal in \(S \), \(\beta \neq 0 \). Consequently, using \(R \) is a domain, the relation \(\alpha^* + \beta = \beta \) yields \(\alpha^* + \alpha = 1 \). Since \(\alpha \in R \), \(\alpha = \sum k_i a_i \) where \(k_i \in K \). Since \(\alpha^* + \alpha = 1 \) and \(char(K) = 2 \), we have \(0 = 1 \), a contradiction. Thus \(S \) has no nontrivial idempotents.

Theorem 3.6. \(S \) is a right CS-ring if and only if \(char(K) \neq 2 \).

Proof. First assume that \(char(K) \neq 2 \). Let \(U \) be a closed right ideal of \(S \). By Lemma 3.4, \(U_R \) is a closed submodule of the right \(R \)-module \(S_R \). Since \(S_R \) is CS (Lemma 3.2), \(U_R \) is a direct summand of \(S_R \). But then by Lemma 3.3, \(U \) is a summand of \(S \). Hence \(S \) is a right CS-ring. Conversely, let \(S \) be right CS. Since \(S \) is right CS, every nonzero right ideal of \(S \) is essential in \(S \). Thus \(S \) and hence the right maximal quotient ring \(Q_{max}^*(S) \) of \(S \) is uniform. Since \(S \) is right nonsingular, it follows that \(Q_{max}^*(S) \) is a division ring. Hence \(S \) is a domain, a contradiction because \(1 + b \neq 0 \) and \(1 + b \neq 0 \). Thus \(char(K) \neq 2 \).

In what follows \(Z(S) \) will denote the center of the ring \(S \). Unless otherwise stated \(char(K) \neq 2 \) and \(e = \frac{1}{2} + \frac{1}{2}b \). Notice that \(e \) is an idempotent in \(S \). For \(\alpha = \sum k_i a_i \), we will write \(\alpha^* = \sum k_i a_i^{-1} \). In the following lemma we determine \(Z(S) \).

Lemma 3.7. For any field \(K \), \(Z(S) = \{ \alpha \in R \mid \alpha = \alpha^* \} \).

Proof. Clearly, \(\{ \alpha \in R \mid \alpha = \alpha^* \} \subset Z(S) \). To prove the reverse inclusion, let \(s = \alpha + b \beta \in Z(S) \). Then \(sx = xs \) for every \(x \in S \). In particular, \(sa = as \) and \(sb = bs \). Now \(sa = as \) gives \(\alpha a + \beta ba = a \alpha + a b \beta \). Since \(\alpha a = a \alpha \), we get \(\beta a^{-1}b = a \beta \), that is, \((a^2 - 1) \beta = 0 \). Thus, \(\beta = 0 \). Consequently, \(s = \alpha \in R \). Again as \(sb = bs \), we have \(\alpha b = ba = \alpha^* b \). Thus \(\alpha = \alpha^* \) and the proof is complete.

Lemma 3.8. \(Z(S) \) is a Dedekind domain.

Proof. Clearly, \(Z(S) \simeq eZ(S) = eSe \). Since \(S \) is right noetherian, \(eSe \) is right noetherian ([7], Lemma 2.7.12). Thus \(Z(S) \) is right noetherian. Since \(S \) is a prime PI ring, by ([4], Corollary 6.14, p. 467), \(S \) is a finitely generated \(Z(S) \)-module. Let \(S = s_1 Z(S) + s_2 Z(S) + ... + s_k Z(S) \) and let for \(1 \leq i \leq k \), \(s_i = \alpha_i + \beta_i b \) where \(\alpha_i, \beta_i \in R \). Then \(R \oplus R = (\alpha_1 + \beta_1 b)Z(S) + (\alpha_2 + \beta_2 b)Z(S) + ... + (\alpha_k + \beta_k b)Z(S) \). Consequently, \(R = \alpha Z(S) + \alpha Z(S) + ... + \alpha Z(S) \), that is, \(R \) is a finitely generated noetherian \(Z(S) \)-module. Thus by ([2], Theorem 17) \(R \) is integral over \(Z(S) \), that is, \(R \mid Z(S) \) is an integral extension of \(Z(S) \).

Let \(L \) denote the quotient field of \(Z(S) \). We will show that \(R \cap L = Z(S) \). Let \(\gamma \in R \cap L \). Then \(\gamma = \alpha \beta^{-1} \) for some \(\alpha, \beta \in Z(S) \). Thus \(\alpha = \gamma \beta \). Since
\[\alpha, \beta \in Z(S), \alpha = \alpha^*, \beta = \beta^*.\] Hence \[\gamma^* = \alpha^* = (\gamma \beta)^* = \beta^* \gamma^* = \beta \gamma^*\] so that \[\gamma^* = \alpha \beta^{-1} = \gamma.\] Since \[\gamma \in R,\] we have \[\gamma \in Z(S).\] Hence \[R \cap L = Z(S).\] Since \[R\] is a Dedekind domain, it follows, by ([8], Theorem 20, p.283), that \[Z(S)\] is a Dedekind domain.

Theorem 3.9. \(R\) and \(S\) are CS as right \(Z(S)\)-modules.

Proof. Clearly, \[Z(S) \cap aZ(S) = (0).\] Further, since \[a^{-n} = (a^n + a^{-n}) - a^n\] and \[a^n = a^{n-1}(a + a^{-1}) - a^{n-2}\] we have \[R = Z(S) \oplus aZ(S) \simeq Z(S) \times Z(S).\] Also as \[S = R \oplus bR,\] we have \[S \simeq Z(S) \times Z(S) \times Z(S) \times Z(S).\] By Theorem 3.8, \[Z(S)\] is a Dedekind domain. The result now follows by Lemma 3.1.

Remark 1. The uniform dimension of \(R\) as a \(Z(S)\)-module is 2 and that of \(S\) as a \(Z(S)\)-module is 4.

ACKNOWLEDGMENT

S. K. Jain would like to thank Indian Institute of Technology, Delhi and its Department of Mathematics for their hospitality during his visit to the Institute in November–December 1997. P. Kanwar would also like to express his thanks to Professor J. B. Srivastava for providing him an opportunity to join in the project.

REFERENCES

Department of Mathematics, Ohio University, Athens, Ohio 45701

E-mail address: jain@math.ohiou.edu

E-mail address: pkanwar@math.ohiou.edu

Current address, P Kanwar: Division of Mathematics and Computer Science, Truman State University, Kirksville, Missouri 63501

Department of Mathematics, Hindu College, Delhi-110007, India

E-mail address: sbm@csec.ernet.in

Department of Mathematics, Indian Institute of Technology, New Delhi-110016, India

E-mail address: jbsrivas@maths.iitd.ernet.in