A note on restricted weak-type estimates for Bochner-Riesz operators with negative index in $\mathbb {R}^n$, $n\ge 2$
HTML articles powered by AMS MathViewer
- by Susana Gutiérrez
- Proc. Amer. Math. Soc. 128 (2000), 495-501
- DOI: https://doi.org/10.1090/S0002-9939-99-05144-8
- Published electronically: June 24, 1999
- PDF | Request permission
Abstract:
It is shown that the Bochner-Riesz operator on $\mathbb {R}^n$ of negative order $\alpha$ is of restricted weak type in the critical points $(p_0,q_0)$ and $(q_0’, p_0’)$, where $1/q_0=3/4+\alpha /2$, $q_0=p_0’/3$ for $-3/2<\alpha <0$ in the two-dimensional case and $1/q_0=(n+1+2\alpha )/2n$, $q_0=(n-1)p_0’/(n+1),$ for $-(n+ 1)/2<\alpha <-1/2$ if $n\geq 3$.References
- C. Bennet & R. Sharpley, Interpolation of operators, Academic Press, Inc., Orlando, Florida, (1988).
- J. Bergh & J. Löfström, Interpolation of spaces, An introduction, Springer-Verlag, Berlin-Heidelberg-New York, (1976).
- J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1 (1991), no. 2, 147–187. MR 1097257, DOI 10.1007/BF01896376
- Jong-Guk Bak, Sharp estimates for the Bochner-Riesz operator of negative order in $\textbf {R}^2$, Proc. Amer. Math. Soc. 125 (1997), no. 7, 1977–1986. MR 1371114, DOI 10.1090/S0002-9939-97-03723-4
- J.-G. Bak, D. McMichael & D. Oberlin, $L^p$-$L^q$ Estimates off the line of duality, J. Austral. Math. Soc., 58, (1995), 154-166.
- Lennart Börjeson, Estimates for the Bochner-Riesz operator with negative index, Indiana Univ. Math. J. 35 (1986), no. 2, 225–233. MR 833391, DOI 10.1512/iumj.1986.35.35013
- Anthony Carbery and Fernando Soria, Almost-everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an $L^2$-localisation principle, Rev. Mat. Iberoamericana 4 (1988), no. 2, 319–337. MR 1028744, DOI 10.4171/RMI/76
- Christopher D. Sogge, Oscillatory integrals and unique continuation for second order elliptic differential equations, J. Amer. Math. Soc. 2 (1989), no. 3, 491–515. MR 999662, DOI 10.1090/S0894-0347-1989-0999662-3
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- E.M. Stein & G.Weiss, An introduction to Fourier analysis on Euclidean spaces, Princeton U. Press, Princeton, New Jersey, 1975.
- Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477–478. MR 358216, DOI 10.1090/S0002-9904-1975-13790-6
- Peter A. Tomas, Restriction theorems for the Fourier transform, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–114. MR 545245
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
Bibliographic Information
- Susana Gutiérrez
- Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad del País Vasco (UPV-EHU), Aptdo 644, 48080 Bilbao, Spain
- Email: mtbgugrs@lg.ehu.es
- Received by editor(s): March 29, 1998
- Published electronically: June 24, 1999
- Additional Notes: Supported by a grant from Spanish Ministry of Education and Sciences.
- Communicated by: Christopher D. Sogge
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 495-501
- MSC (1991): Primary 42B15
- DOI: https://doi.org/10.1090/S0002-9939-99-05144-8
- MathSciNet review: 1641626