The best possibility of the grand Furuta inequality
HTML articles powered by AMS MathViewer
- by Kôtarô Tanahashi
- Proc. Amer. Math. Soc. 128 (2000), 511-519
- DOI: https://doi.org/10.1090/S0002-9939-99-05261-2
- Published electronically: July 6, 1999
- PDF | Request permission
Abstract:
Let $A, B \in B(H)$ be invertible bounded linear operators on a Hilbert space $H$ satisfying $O\leq B \leq A$ , and let $p, r, s , t$ be real numbers satisfying $1 < s, 0 < t < 1 , t \leq r , 1 \leq p .$ Furuta showed that if $0 < \alpha \leq \dfrac { 1-t+r}{ (p-t)s + r}$, then $\left \{ A^{\frac {r}{2}} \left ( A^{ -\frac {t}{2}} B^{p} A^{ -\frac {t}{2}} \right )^{s} A^{\frac {r}{2}} \right \}^{\alpha } \leq A^{ \left \{ (p-t)s + r \right \} \alpha }$. This inequality is called the grand Furuta inequality, which interpolates the Furuta inequality $(t=0)$ and the Ando-Hiai inequality ( $t=1, r = s$ ). In this paper, we show the grand Furuta inequality is best possible in the following sense: that is, if $\dfrac { 1-t+r}{ (p-t)s + r} < \alpha$, then there exist invertible matrices $A,B$ with $O\leq B \leq A$ which do not satisfy $\left \{ A^{\frac {r}{2}} \left ( A^{ -\frac {t}{2}} B^{p} A^{ -\frac {t}{2}} \right )^{s} A^{\frac {r}{2}} \right \}^{\alpha } \leq A^{ \left \{ (p-t)s + r \right \} \alpha }$.References
- N. N. Chan and Man Kam Kwong, Hermitian matrix inequalities and a conjecture, Amer. Math. Monthly 92 (1985), no. 8, 533–541. MR 812096, DOI 10.2307/2323157
- Ariyadasa Aluthge, Some generalized theorems on $p$-hyponormal operators, Integral Equations Operator Theory 24 (1996), no. 4, 497–501. MR 1382022, DOI 10.1007/BF01191623
- Masatoshi Fujii, Takayuki Furuta, and Eizaburo Kamei, Complements to the Furuta inequality, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), no. 7, 239–242. MR 1303571
- Takayuki Furuta, $A\geq B\geq 0$ assures $(B^rA^pB^r)^{1/q}\geq B^{(p+2r)/q}$ for $r\geq 0$, $p\geq 0$, $q\geq 1$ with $(1+2r)q\geq p+2r$, Proc. Amer. Math. Soc. 101 (1987), no. 1, 85–88. MR 897075, DOI 10.1090/S0002-9939-1987-0897075-6
- Takayuki Furuta, Applications of order preserving operator inequalities, Operator theory and complex analysis (Sapporo, 1991) Oper. Theory Adv. Appl., vol. 59, Birkhäuser, Basel, 1992, pp. 180–190. MR 1246815
- Takayuki Furuta, Furuta’s inequality and its application to the relative operator entropy, J. Operator Theory 30 (1993), no. 1, 21–30. MR 1302604
- Takayuki Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Algebra Appl. 219 (1995), 139–155. MR 1327396, DOI 10.1016/0024-3795(93)00203-C
- Takayuki Furuta, Generalized Aluthge transformation on $p$-hyponormal operators, Proc. Amer. Math. Soc. 124 (1996), no. 10, 3071–3075. MR 1350943, DOI 10.1090/S0002-9939-96-03580-0
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- K. Löwner, Über monotone Matrixfunktionen, Math. Z., 38 (1934), 177–216.
- Kôtarô Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc. 124 (1996), no. 1, 141–146. MR 1291794, DOI 10.1090/S0002-9939-96-03055-9
- K. Tanahashi, The Furuta inequality with negative power, Proc. Amer. Math. Soc. (to appear).
- T. Yoshino, A modified Heinz’s inequality, (preprint)
Bibliographic Information
- Kôtarô Tanahashi
- Email: tanahasi@tohoku-pharm.ac.jp
- Received by editor(s): September 27, 1997
- Received by editor(s) in revised form: March 31, 1998
- Published electronically: July 6, 1999
- Communicated by: David R. Larson
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 511-519
- MSC (1991): Primary 47B15
- DOI: https://doi.org/10.1090/S0002-9939-99-05261-2
- MathSciNet review: 1654088