A Fatou theorem for the equation $u_t=\Delta (u-1)_+$
HTML articles powered by AMS MathViewer
- by Marianne K. Korten
- Proc. Amer. Math. Soc. 128 (2000), 439-444
- DOI: https://doi.org/10.1090/S0002-9939-99-05386-1
- Published electronically: September 24, 1999
- PDF | Request permission
Abstract:
In one space dimension and for a given function $u_I (x) \in C_0 ^ {\infty }$ (say such that $u_I (x) > 1$ in some interval), the equation $u_t = \Delta (u-1)_+$ can be thought of as describing the energy per unit volume in a Stefan-type problem where the latent heat of the phase change is given by $1-u_I (x)$. Given a solution $0 \leq u \in L^1 _{\mathrm {loc}} (\mathbb {R} ^n \times (0,T))$ to this equation, we prove that for a.e. $x_0 \in \mathbb {R} ^n$, there exists $\lim _{(x,t) \in \Gamma _{\beta } ^k (x_0),\; (x,t) \to x_0} (u(x,t) -1)_+ =( f(x_0)-1)_+,$ where $f =\partial \mu / \partial |\;|$ is the Radon-Nikodym derivative of the initial trace $\mu$ with respect to Lebesgue measure and $\Gamma _{\beta } ^k (x_0) = \{ (x,t): |x-x_0| < \beta \sqrt t,\; 0<t<k \}$ are the parabolic “non-tangential" approach regions. Since only $(u-1)_+$ is continuous, while $u$ is usually not, $\lim _{(x,t) \in \Gamma _{\beta } ^k (x_0),\; (x,t) \to x_0} u(x,t) = f(x_0)$ does not hold in general.References
- D. Andreucci and M. K. Korten, Initial traces of solutions to a one-phase Stefan problem in an infinite strip, Rev. Mat. Iberoamericana 9 (1993), no. 2, 315–332. MR 1232846, DOI 10.4171/RMI/139
- J. E. Bouillet, Signed solutions to diffusion-heat conduction equations, Free Boundary Problems: Theory and Applications, Proc. Int. Colloq. Irsee/Ger. 1987, Vol. II, Pitman Res. Notes Math. Ser. 186 (1990), 480–485.
- J. E. Bouillet, M. K. Korten and V. Márquez, Singular limits and the “Mesa" problem, Rev. Union Mat. Argentina, Vol. 41 (1998), no. 1, 27–40.
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Björn E. J. Dahlberg, Eugene B. Fabes, and Carlos E. Kenig, A Fatou theorem for solutions of the porous medium equation, Proc. Amer. Math. Soc. 91 (1984), no. 2, 205–212. MR 740172, DOI 10.1090/S0002-9939-1984-0740172-3
- Emmanuele DiBenedetto, Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl. (4) 130 (1982), 131–176 (English, with Italian summary). MR 663969, DOI 10.1007/BF01761493
- Kin Ming Hui, Fatou theorem for the solutions of some nonlinear equations, J. Math. Anal. Appl. 183 (1994), no. 1, 37–52. MR 1273430, DOI 10.1006/jmaa.1994.1129
- Marianne K. Korten, Nonnegative solutions of $u_t=\Delta (u-1)_+$: regularity and uniqueness for the Cauchy problem, Nonlinear Anal. 27 (1996), no. 5, 589–603. MR 1396031, DOI 10.1016/0362-546X(95)00137-K
Bibliographic Information
- Marianne K. Korten
- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. No. 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina; Instituto Argentino de Matemática (CONICET), Saavedra 15, 3er. piso, 1083 Buenos Aires, Argentina
- Address at time of publication: Department of Mathematics, University of Liousville, Louisville, Kentucky 40292
- Email: mkorten@dm.uba.ar, korten@louisville.edu
- Received by editor(s): February 28, 1998
- Published electronically: September 24, 1999
- Additional Notes: This research was partially supported by PIDs 3668/92 and 3164/92-CONICET and EX 071-UBA
- Communicated by: Christopher D. Sogge
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 439-444
- MSC (1991): Primary 35K65, 31A20
- DOI: https://doi.org/10.1090/S0002-9939-99-05386-1
- MathSciNet review: 1670395
Dedicated: Dedicated to the memory of Eugene Fabes