A fixed point theorem and its application
to integral equations
in modular function spaces
Authors:
A. Ait Taleb and E. Hanebaly
Journal:
Proc. Amer. Math. Soc. 128 (2000), 419-426
MSC (1991):
Primary 46A80, 47H10, 45G10, 46E30
DOI:
https://doi.org/10.1090/S0002-9939-99-05546-X
Published electronically:
October 12, 1999
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we present a fixed point theorem of Banach type in modular spaces. Also, we give some applications of this result to a nonlinear integral equation in Musielak-Orlicz space.
- 1. A. Ait Taleb, Points fixes et Applications aux equations intégrales dans les espaces modulaires. Thèse de 3ème cycle, Département de Mathématiques et Informatique, Rabat (1996).
- 2. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985. MR 86j:47001
- 3. K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry and nonexpansive mappings, Marcel Dekker, New York, 1984. MR 86d:58012
- 4. K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990. MR 92c:47070
- 5. M. A. Khamsi, W. M. Kozlowski, and S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal. 14 (1990), 935-953. MR 91d:47042
- 6. M. A. Khamsi, Nonlinear semigroups in modular function space, thèse d'état. Département de Mathématiques, Rabat (1994).
- 7. W. M. Kozlowski, Modular function spaces, Marcel Dekker, 1988. MR 99d:46043
- 8. J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, 1983. MR 85m:46028
- 9. E. Zeidler, Nonlinear functional analysis and its applications. III, Springer-Verlag, 1985. MR 90b:49005
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 46A80, 47H10, 45G10, 46E30
Retrieve articles in all journals with MSC (1991): 46A80, 47H10, 45G10, 46E30
Additional Information
A. Ait Taleb
Affiliation:
Department of Mathematics and Informatic, University of Mohammed V, BP 1014, Rabat, Morocco
E. Hanebaly
Affiliation:
Department of Mathematics and Informatic, University of Mohammed V, BP 1014, Rabat, Morocco
DOI:
https://doi.org/10.1090/S0002-9939-99-05546-X
Keywords:
Modular space,
fixed point,
integral equation
Received by editor(s):
October 30, 1997
Published electronically:
October 12, 1999
Communicated by:
Dale Alspach
Article copyright:
© Copyright 1999
American Mathematical Society