Construction of a normal basis by special values of Siegel modular functions
HTML articles powered by AMS MathViewer
- by Keiichi Komatsu
- Proc. Amer. Math. Soc. 128 (2000), 315-323
- DOI: https://doi.org/10.1090/S0002-9939-99-05601-4
- Published electronically: September 27, 1999
- PDF | Request permission
Abstract:
We consider certain abelian extensions $K,k_1$ of $Q(e^{2\pi i/5})$ and show by a method of Shimura that a normal basis of $K$ over $k_1$ can be given by special values of Siegel modular functions.References
- Jun-ichi Igusa, Arithmetic variety of moduli for genus two, Ann. of Math. (2) 72 (1960), 612–649. MR 114819, DOI 10.2307/1970233
- Jun-ichi Igusa, Modular forms and projective invariants, Amer. J. Math. 89 (1967), 817–855. MR 229643, DOI 10.2307/2373243
- Jun-ichi Igusa, On the ring of modular forms of degree two over $\textbf {Z}$, Amer. J. Math. 101 (1979), no. 1, 149–183. MR 527830, DOI 10.2307/2373943
- Fuminori Kawamoto, Remark on: “On normal integral bases” [Tokyo J. Math. 7 (1984), no. 1, 221–231; MR0752124 (85m:11074)], Tokyo J. Math. 8 (1985), no. 1, 275. MR 800089, DOI 10.3836/tjm/1270151583
- Keiichi Komatsu, Normal basis and Greenberg’s conjecture, Math. Ann. 300 (1994), no. 1, 157–163. MR 1289836, DOI 10.1007/BF01450481
- Tadashige Okada, Normal bases of class fields over Gauss’ number field, J. London Math. Soc. (2) 22 (1980), no. 2, 221–225. MR 588269, DOI 10.1112/jlms/s2-22.2.221
- Reinhard Schertz, Galoismodulstruktur und elliptische Funktionen, J. Number Theory 39 (1991), no. 3, 285–326 (German, with English summary). MR 1133558, DOI 10.1016/0022-314X(91)90051-C
- Goro Shimura, Theta functions with complex multiplication, Duke Math. J. 43 (1976), no. 4, 673–696. MR 424705
- Goro Shimura, On canonical models of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 91 (1970), 144–222. MR 257031, DOI 10.2307/1970604
- Goro Shimura and Yutaka Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Publications of the Mathematical Society of Japan, vol. 6, Mathematical Society of Japan, Tokyo, 1961. MR 0125113
- M. J. Taylor, Relative Galois module structure of rings of integers and elliptic functions. II, Ann. of Math. (2) 121 (1985), no. 3, 519–535. MR 794372, DOI 10.2307/1971208
Bibliographic Information
- Keiichi Komatsu
- Affiliation: Department of Information and Computer Science, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169, Japan
- Received by editor(s): June 20, 1997
- Published electronically: September 27, 1999
- Communicated by: David E. Rohrlich
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 315-323
- MSC (2000): Primary 11G15, 11R27, 11Y40
- DOI: https://doi.org/10.1090/S0002-9939-99-05601-4
- MathSciNet review: 1707153