Extensions of holomorphic maps through hypersurfaces and relations to the Hartogs extensions in infinite dimension
HTML articles powered by AMS MathViewer
- by Do Duc Thai and Nguyen Thai Son
- Proc. Amer. Math. Soc. 128 (2000), 745-754
- DOI: https://doi.org/10.1090/S0002-9939-99-05033-9
- Published electronically: July 27, 1999
- PDF | Request permission
Abstract:
A generalization of Kwack’s theorem to the infinite dimensional case is obtained. We consider a holomorphic map $f$ from $Z$ $\setminus$ $H$ into $Y$, where $H$ is a hypersurface in a complex Banach manifold $Z$ and $Y$ is a hyperbolic Banach space. Under various assumptions on $Z$, $H$ and $Y$ we show that $f$ can be extended to a holomorphic map from $Z$ into $Y$. Moreover, it is proved that an increasing union of pseudoconvex domains containing no complex lines has the Hartogs extension property.References
- Theodore J. Barth, The Kobayashi distance induces the standard topology, Proc. Amer. Math. Soc. 35 (1972), 439–441. MR 306545, DOI 10.1090/S0002-9939-1972-0306545-X
- Robert Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213–219. MR 470252, DOI 10.1090/S0002-9947-1978-0470252-3
- Seán Dineen, Richard M. Timoney, and Jean-Pierre Vigué, Pseudodistances invariantes sur les domaines d’un espace localement convexe, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), no. 4, 515–529 (1986) (French). MR 848840
- John Erik Fornaess, An increasing sequence of Stein manifolds whose limit is not Stein, Math. Ann. 223 (1976), no. 3, 275–277. MR 417448, DOI 10.1007/BF01360958
- Hirotaka Fujimoto, On holomorphic maps into a taut complex space, Nagoya Math. J. 46 (1972), 49–61. MR 310274
- Yves Hervier, On the Weierstrass problem in Banach spaces, Proceedings on Infinite Dimensional Holomorphy (Internat. Conf., Univ. Kentucky, Lexington, Ky., 1973) Lecture Notes in Math., Vol. 364, Springer, Berlin, 1974, pp. 157–167. MR 0397407
- S. M. Ivashkovicz, The Hartogs phenomenon for holomorphically convex Kähler manifolds, English transl. : Math. USSR Izvestiya 29 (1987), 225-232.
- Peter Kiernan, Extensions of holomorphic maps, Trans. Amer. Math. Soc. 172 (1972), 347–355. MR 318519, DOI 10.1090/S0002-9947-1972-0318519-8
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Myung H. Kwack, Generalization of the big Picard theorem, Ann. of Math. (2) 90 (1969), 9–22. MR 243121, DOI 10.2307/1970678
- Serge Lang, Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987. MR 886677, DOI 10.1007/978-1-4757-1945-1
- Pierre Mazet, Analytic sets in locally convex spaces, North-Holland Mathematics Studies, vol. 89, North-Holland Publishing Co., Amsterdam, 1984. Notas de Matemática [Mathematical Notes], 93. MR 756238
- Jorge Mujica, Complex analysis in Banach spaces, North-Holland Mathematics Studies, vol. 120, North-Holland Publishing Co., Amsterdam, 1986. Holomorphic functions and domains of holomorphy in finite and infinite dimensions; Notas de Matemática [Mathematical Notes], 107. MR 842435
- Jean-Pierre Ramis, Sous-ensembles analytiques d’une variété banachique complexe, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 53, Springer-Verlag, Berlin-New York, 1970 (French). MR 0293126
- Bernard Shiffman, Extension of holomorphic maps into hermitian manifolds, Math. Ann. 194 (1971), 249–258. MR 291507, DOI 10.1007/BF01350128
- B. D. Tac, Extending holomorphic maps in infinite dimension, Ann. Polon. Math. 54 (1991), 241-253.
- Do Duc Thai and Nguyen Le Huong, On the disc - convexity of Banach analytic manifolds, Ann. Polon. Math. 69 (1998), 1–11.
- Tullio Franzoni and Edoardo Vesentini, Holomorphic maps and invariant distances, Notas de Matemática [Mathematical Notes], vol. 69, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 563329
- Edoardo Vesentini, Invariant distances and invariant differential metrics in locally convex spaces, Spectral theory (Warsaw, 1977) Banach Center Publ., vol. 8, PWN, Warsaw, 1982, pp. 493–512. MR 738313
Bibliographic Information
- Do Duc Thai
- Affiliation: Department of Mathematics, Vietnam National University, Institute of Pedagogy, Cau Giay - Tu Liem, Hanoi, Vietnam
- Email: ddthai@netnam.org.vn
- Nguyen Thai Son
- Affiliation: Department of Mathematics, Vietnam National University, Institute of Pedagogy, Cau Giay - Tu Liem, Hanoi, Vietnam
- Received by editor(s): May 27, 1997
- Received by editor(s) in revised form: April 20, 1998
- Published electronically: July 27, 1999
- Additional Notes: Supported by the State Program for Fundamental Research in Natural Science.
- Communicated by: Steven R. Bell
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 745-754
- MSC (1991): Primary 32E05, 32H20; Secondary 32F05, 58B12
- DOI: https://doi.org/10.1090/S0002-9939-99-05033-9
- MathSciNet review: 1622985