INJECTIVE MODULES AND LINEAR GROWTH OF PRIMARY DECOMPOSITIONS

R. Y. SHARP

(Communicated by Wolmer V. Vasconcelos)

Abstract. The purposes of this paper are to generalize, and to provide a short proof of, I. Swanson’s Theorem that each proper ideal \(a \) in a commutative Noetherian ring \(R \) has linear growth of primary decompositions, that is, there exists a positive integer \(h \) such that, for every positive integer \(n \), there exists a minimal primary decomposition \(a^n = q_{n1} \cap \cdots \cap q_{nk} \), with \(\sqrt{Q_{ni}} : M \) \(\subseteq (Q_{ni} : M) \) for all \(i = 1, \ldots, k_n \). The generalization involves a finitely generated \(R \)-module and several ideals; the short proof is based on the theory of injective \(R \)-modules.

0. Introduction

Throughout, let \(R \) denote a commutative Noetherian ring, let \(M \) be a finitely generated \(R \)-module, and let \(a_1, \ldots, a_t \) be ideals of \(R \) such that, for all \(i = 1, \ldots, t \), we have \(M \neq a_i M \). We say that \(a_1, \ldots, a_t \) have linear growth of primary decompositions with respect to \(M \) if there exists a positive integer \(h \) such that, for every \(n := (n_1, \ldots, n_t) \in \mathbb{N}_t \) (we use \(\mathbb{N} \) to denote the set of positive integers and \(\mathbb{N}_0 \) to denote the set of non-negative integers), there exists a minimal primary decomposition of \(a_1 \cdots a_t M \) in \(M \),

\[
a_1 \cdots a_t M = Q_{n1} \cap \cdots \cap Q_{nk},
\]

with \(\sqrt{(Q_{ni} : M)^{h(n_1 + \cdots + n_t)}} \subseteq (Q_{ni} : M) \) for all \(i = 1, \ldots, k_n \).

One purpose of this paper is to prove that it is always the case that \(a_1, \ldots, a_t \) have linear growth of primary decompositions with respect to \(M \); this generalizes the theorem of I. Swanson [S, Theorem 3.4] that every (single) proper ideal in \(R \) has linear growth of primary decompositions (with respect to \(R \)). In [He-S], W. Heinzer and Swanson gave an alternative proof of Swanson’s Theorem in the special case where \(R \) is locally at each prime ideal formally equidimensional and analytically unramified. Motivation for this work comes from the so-called “localization problem” in the theory of tight closure: see K. E. Smith and Swanson [S-S, Corollary 1.3] (and its proof) and M. Hochster and C. Huneke [H-H, p. 43].

Swanson’s proof in [S, Theorem 3.4] relies on a “linear uniform Artin-Rees Lemma”, and several pages of her paper are devoted to a proof (based on ideas of...
C. Huneke [Hu]) of that lemma. A second purpose of this paper is to present a much shorter proof of Swanson’s Theorem (and, indeed, of the above-mentioned generalization) based on the well-known theory of injective \(R \)-modules and D. Kirby’s Artin-Rees Lemma for Artinian modules [K, Proposition 3]. This proof is offered in the hope that the ideas might lead to progress on the above-mentioned “localization problem”.

1. Some preliminaries

1.1 Notation. In addition to the notation introduced in Section 0, the following further notation will be used in this paper.

The proof of the result described in the Introduction can be quickly reduced to the case where each \(a_i \) (\(i = 1, \ldots , t \)) is principal and generated by an element which is a non-zerodivisor on \(R \) and a non-zerodivisor on \(M \): we shall use \(u_1, \ldots , u_t \) to denote elements of \(R \) which are non-zerodivisors on both \(R \) and \(M \). For \(n := (n_1, \ldots , n_t) \in \mathbb{N}_0^t \), we shall use \(a^n \) as an abbreviation for the ideal \(a_1^{n_1} \cdots a_t^{n_t} \); likewise, \(u^n \) will be used as an abbreviation for \(u_1^{n_1} \cdots u_t^{n_t} \). For use with this notation, it will be convenient to set \(e_i = (0, \ldots , 0, 1, 0, \ldots , 0) \in \mathbb{N}_0^t \) (where the 1 is in the \(i \)-th position), and to use + to denote componentwise addition in \(\mathbb{N}_0^t \) and 0 to denote the \(t \)-tuple of zeros in \(\mathbb{N}_0^t \).

For \(n := (n_1, \ldots , n_t) \in \mathbb{N}_0^t \), we define \(|n| := \sum_{i=1}^{t} n_i \).

For each \(i = 1, \ldots , t \), set \(\Psi_i := \text{Ass}(M/u_i M) \); since \(u_i \) is a non-zerodivisor on \(M \), we have \(\Psi_i := \text{Ass}(M/u_i^n M) \) for all \(n \in \mathbb{N} \). Set \(\Psi := \bigcup_{i=1}^{t} \Psi_i \), a finite set. An easy inductive argument based on the exact sequences

\[0 \rightarrow u_i M/u^+ M \rightarrow M/u^+ M \rightarrow M/u_i M \rightarrow 0 \]

\((i = 1, \ldots , t)\) shows that \(\text{Ass}(M/u^n M) \subseteq \Psi \) for all \(0 \neq n \in \mathbb{N}_0^t \).

We shall use \(E(N) \) (or \(E_R(N) \)) to denote the injective envelope of the \(R \)-module \(N \). We can deduce from the Matlis-Gabriel theory of injective \(R \)-modules (see [M, §18], for example) that, for each \(i = 1, \ldots , t \), there are a finite family \((p_{\alpha})_{\alpha \in \Lambda_i} \) of prime ideals of \(\Psi \) (so that the indexing set \(\Lambda_i \) is finite) and an \(R \)-monomorphism

\[\eta_{e_i} : M/u_i M \rightarrow \bigoplus_{\alpha \in \Lambda_i} E(R/p_{\alpha}); \]

for each \(\beta \in \Lambda_{e_i} \), let \(\pi_{\beta} : \bigoplus_{\alpha \in \Lambda_i} E(R/p_{\alpha}) \rightarrow E(R/p_{\beta}) \) denote the canonical projection; then \(\text{Im}(\pi_{\beta} \circ \eta_{e_i}) \) is annihilated by some power of \(p_{\beta} \) (by [M, Theorem 18.4(v)]). Note that it is possible to choose \(h_0 \in \mathbb{N} \) sufficiently large so that

\[p_{\beta}^{h_0} \text{Im}(\pi_{\beta} \circ \eta_{e_i}) = 0 \quad \text{for all } \beta \in \Lambda_{e_i} \text{ and all } i = 1, \ldots , t. \]

1.2 Lemma. Let \(p \in \text{Spec}(R) \), and set \(E := E(R/p) \). Denote \(\text{Hom}_R(M, E) \) by \(H \).

Let \(b \in R \).

(i) There exists \(h_1 \in \mathbb{N}_0 \) such that

\[(0 :_H bR) + (0 :_H p^{h_1}) = \left(\left((0 :_H bR) + (0 :_H p^{h_1}) \right) :_H p^{n-h_1} \right) \quad \text{for all } n \geq h_1. \]

(ii) Assume now that \(b \) is a non-zerodivisor on \(M \), and let \(f \in H \) and \(m \in \mathbb{N} \) be such that \(p^m f = 0 \). Then there exists \(f' \in H \) such that \(f = bf' \) and \(p^{m+h_1} f' = 0 \), where \(h_1 \) is as in part (i).
Proof. (i) By [M, 18.4(vi)], the R-module E has a natural structure as an (R, R_p)-bimodule, and so H also inherits a structure as R_p-module; furthermore, it is easy to see that this R_p-module structure is such that, for each ideal c of R, we have $(0 :_H c) = (0 :_H cR_p)$; hence $(0 :_R bR) + (0 :_R p^h)$ (for $k \in \mathbb{N}$) is an R_p-submodule of H, and so

\[
((0 :_H bR) + (0 :_H p^h)) : \mathfrak{p}^l = \left(\left((0 :_H bR) + (0 :_H p^h)\right) : \mathfrak{p}^l\right) \forall l \in \mathbb{N}.
\]

Now $E \cong E_{R_p}(R_p/\mathfrak{p}R_p)$ as R_p-modules (by [M, 18.4(vi)]), and it is well known that $E_{R_p}(R_p/\mathfrak{p}R_p)$ is an Artinian R_p-module (see [M, 18.6(v)], for example). It therefore follows from the additivity and exactness of the functor $\text{Hom}_R(\bullet, E)$ (from the category of R-modules to the category of R_p-modules) that H is R_p-isomorphic to a submodule of $\text{Hom}_R(F, E)$ for some finitely generated free R-module F; hence H is an Artinian R_p-module. The claim in part (i) therefore follows from D. Kirby’s Artin-Rees Lemma [K, Proposition 3].

(ii) Since b is a non-zerodivisor on M, it follows from the exactness of the functor $\text{Hom}_R(\bullet, E)$ that $H = bH$. Hence there exists $g \in H$ such that $f = bg$. Since $\mathfrak{p}^m f = 0$, it follows that

\[
g \in ((0 :_H bR) : \mathfrak{p}^m) \subseteq \left(\left((0 :_H bR) + (0 :_H p^{h_1})\right) : \mathfrak{p}^m\right) = (0 :_H bR) + (0 :_H \mathfrak{p}^{m+h_1}),
\]

and so there exist $f_0 \in (0 :_H bR)$ and $f' \in (0 :_H \mathfrak{p}^{m+h_1})$ such that $g = f_0 + f'$. Since $f = bg = b(f_0 + f') = bf'$, the proof is complete. \qed

1.3 Remark. Let the situation be as in Lemma 1.2(i). Observe that, if h'_1 is any integer such that $h'_1 \geq h_1$, then we also have

\[
(0 :_H bR) + (0 :_H \mathfrak{p}^n) = \left(\left((0 :_H bR) + (0 :_H \mathfrak{p}^{h_1})\right) : \mathfrak{p}^{n-h_1}\right) \quad \text{for all } n \geq h'_1.
\]

In other (and less precise) words, the conclusion of 1.2(i) holds for any ‘larger h_1’.

1.4 Notation. Bearing in mind (the last sentence of) 1.1, Lemma 1.2(i) and Remark 1.3, we choose h to be a positive integer such that

(i)

\[
\mathfrak{p}^h \text{Im}(\pi_\beta \circ \eta_{e_i}) = 0 \quad \text{for all } \beta \in \Lambda_{e_i} \text{ and all } i = 1, \ldots, t,
\]

and

(ii) for all $\mathfrak{p} \in \mathfrak{P}$, we have, for $H(\mathfrak{p}) := \text{Hom}_R(M, E(\mathfrak{p}/\mathfrak{p}))$,

\[
(0 :_{H(\mathfrak{p})} u_i R) + (0 :_{H(\mathfrak{p})} \mathfrak{p}^n) = \left(\left((0 :_{H(\mathfrak{p})} u_i R) + (0 :_{H(\mathfrak{p})} \mathfrak{p}^h)\right) :_{H(\mathfrak{p})} \mathfrak{p}^{n-h}\right)
\]

for all $n \geq h$ and all $i = 1, \ldots, t$.

1.5 Lemma. Let $\mathfrak{p} \in \mathfrak{P}$, and set $E := E(\mathfrak{p}/\mathfrak{p})$. Let $0 \neq n := (n_1, \ldots, n_t) \in \mathbb{N}_0^t$, let $i \in \{1, \ldots, t\}$, and let $g : u_i M/u^{n_{e_i}} M \rightarrow E$ be an R-homomorphism such that $\mathfrak{p}^n \text{Im} g = 0$, where $n \in \mathbb{N}$. Then g can be extended to an R-homomorphism $g' : M/u^{n+e_i} M \rightarrow E$ such that $\mathfrak{p}^{n+e_i} \text{Im} g' = 0$ (where h is as in 1.4).

Proof. Since u_i is a non-zerodivisor on M, there is an isomorphism

\[
\theta : u_i M/u^{n+e_i} M \rightarrow M/u^n M
\]
which is such that $\theta(u_i m + u_i^{n+e_i} M) = m + u^n M$ for all $m \in M$. Let $\sigma : M \to M/u^n M$ be the natural epimorphism. Then

$$f := g \circ \theta^{-1} \circ \sigma \in \text{Hom}_R(M, E) \quad \text{and} \quad p^n f = 0.$$

Our choice of h means that we can use Lemma 1.2 to deduce that there exists $f' \in \text{Hom}_R(M, E)$ such that $f = u_i f'$ and $p^{n+h} f' = 0$. Since f vanishes on $u^n M$, it follows that f' vanishes on $u^{n+e_i} M$, and so $f' = g' \circ \tau$ for some $g' \in \text{Hom}_R(M/u^{n+e_i} M, E)$, where $\tau : M \to M/u^{n+e_i} M$ is the canonical epimorphism. This g' has the desired properties.

2. The Result

2.1 Theorem. Let M be a finitely generated R-module, and let a_1, \ldots, a_t be ideals of R such that, for all $i = 1, \ldots, t$, we have $M \neq a_i M$. Then a_1, \ldots, a_t have linear growth of primary decompositions with respect to M.

More precisely, there exists a positive integer h such that, for every $0 \neq n := (n_1, \ldots, n_t) \in \mathbb{N}_0^t$, there exists a minimal primary decomposition of $a_1^{n_1} \cdots a_t^{n_t} M$ in M,

$$a_1^{n_1} \cdots a_t^{n_t} M = Q_{n_1} \cap \cdots \cap Q_{n_k},$$

such that

$$\sqrt{(Q_{n_i} : M)} \cap (Q_{n_i} : M) \subseteq (Q_{n_i} : M) \quad \text{for all } i = 1, \ldots, k_n.$$

Proof. We first show that it is enough to prove the result in the special case in which, for all $i = 1, \ldots, t$, the ideal a_i is principal and generated by an element which is both a non-zerodivisor on M and a non-zerodivisor on R.

Let Z denote the set of integers. Take independent indeterminates T_1, \ldots, T_t, denote $R[T_1, \ldots, T_t, T_1^{-1}, \ldots, T_t^{-1}] \otimes_R M$ by $M[T_1, \ldots, T_t, T_1^{-1}, \ldots, T_t^{-1}]$, and denote its element $T_1^{r_1} \cdots T_t^{r_t} \otimes m$ (for $r_1, \ldots, r_t \in Z$ and $m \in M$) by $mT_1^{r_1} \cdots T_t^{r_t}$; the Rees module of M with respect to a_1, \ldots, a_t is

$$\bigoplus_{(r_1, \ldots, r_t) \in Z^t} a_1^{r_1} \cdots a_t^{r_t} MT_1^{r_1} \cdots T_t^{r_t} =: \mathfrak{M},$$

considered as a module over the (extended) Rees ring

$$\mathfrak{R} := R[a_1 T_1, \ldots, a_t T_t, T_1^{-1}, \ldots, T_t^{-1}]$$

de R with respect to a_1, \ldots, a_t (where, as usual, a negative power of an ideal of R is interpreted as R).

For each $i = 1, \ldots, t$, set $u_i := T_i^{-1}$, which is a non-zerodivisor on \mathfrak{R} and a non-zerodivisor on \mathfrak{M}. Now \mathfrak{R} and \mathfrak{M} are naturally \mathbb{Z}^t-graded, the 0-th component of \mathfrak{R} is R, and, for every $n := (n_1, \ldots, n_t) \in \mathbb{N}_0^t$, the 0-th component of $u_1^{n_1} \cdots u_t^{n_t} \mathfrak{M}$ is $a_1^{n_1} \cdots a_t^{n_t} M$. Therefore, if the result could be proved for the \mathfrak{R}-module \mathfrak{M} and the ideals $\mathfrak{R}u_1, \ldots, \mathfrak{R}u_t$ of \mathfrak{R}, then it could be proved for the R-module M and the ideals a_1, \ldots, a_t simply by contruction to 0-th components of appropriate primary decompositions of the $u_1^{n_1} \cdots u_t^{n_t} \mathfrak{M}$ in \mathfrak{M}.

Consequently, we can, and do, assume for the remainder of this proof that, for each $i = 1, \ldots, t$, the ideal a_i is principal and generated by u_i, where u_i is a non-zerodivisor on M and a non-zerodivisor on R. We now re-employ the notations
\(\mathfrak{P}, \Lambda_e, \eta_e, (i = 1, \ldots, t)\) and \(\mathfrak{P}\) introduced in 1.1; we also define \(h\) as in 1.4. Whenever \((p_\alpha)_{\alpha \in \Lambda}\) is a family of prime ideals of \(\mathfrak{P}\), and \(\beta \in \Lambda\), we shall use

\[
\pi_\beta : \bigoplus_{\alpha \in \Lambda} E(R/p_\alpha) \longrightarrow E(R/p_\beta)
\]

to denote the canonical projection.

The next stage in this proof is to show, by induction on \(|n|\), that for all \(0 \neq n \in \mathbb{N}_0^t\), there exist a finite family \((p_\alpha)_{\alpha \in \Lambda_n}\) (so that the indexing set \(\Lambda_n\) is finite) of prime ideals of \(\mathfrak{P}\) and an \(R\)-monomorphism

\[
\eta_n : M/u^n M \longrightarrow \bigoplus_{\alpha \in \Lambda_n} E(R/p_\alpha)
\]

such that, for all \(\beta \in \Lambda_n\), we have \(p_\beta^{h |n|} \text{Im}(\pi_\beta \circ \eta_n) = 0\) (that is, \(p_\beta^{h |n|} (\pi_\beta \circ \eta_n) = 0\)). (It should be noted that it is not claimed that the monomorphism \(\eta_n\) provides the injective envelope of \(M/u^n M\).) By choice of \(h\), this is certainly true when \(|n| = 1\). We therefore suppose that we have proved this statement for \(0 \neq n := (n_1, \ldots, n_t) \in \mathbb{N}_0^t\), and we show now how to deduce that the statement is true for \(n + e_i\), where \(i \in \{1, \ldots, t\}\).

Since \(u_i\) is a non-zerodivisor on \(M\), there is an isomorphism

\[
\theta : u_i M/u^{n+e_i} M \longrightarrow M/u^n M
\]

which is such that \(\theta(u_i m + u^{n+e_i} M) = m + u^n M\) for all \(m \in M\). For each \(\alpha \in \Lambda_n\), let

\[
g_\alpha = \pi_\alpha \circ \eta_n \circ \theta : u_i M/u^{n+e_i} M \longrightarrow E(R/p_\alpha);
\]

by the inductive hypothesis, \(p_\alpha^{h |n|} g_\alpha = 0\), and so it follows from 1.5 that \(g_\alpha\) can be extended to an \(R\)-homomorphism \(g'_\alpha : M/u^{n+e_i} M \longrightarrow E(R/p_\alpha)\) such that \(p_\alpha^{h |n| + h} g'_\alpha = 0\). Define

\[
\mu : M/u^{n+e_i} M \longrightarrow E' := \bigoplus_{\alpha \in \Lambda_n} E(R/p_\alpha)
\]

by \(\mu(x) = (g'_\alpha(x))_{\alpha \in \Lambda_n}\) for all \(x \in M/u^{n+e_i} M\). Observe that the \(R\)-homomorphism \(\mu\) has the property that \(p_\alpha^{h |n| + h} (\pi_\alpha \circ \mu) = 0\) for all \(\alpha \in \Lambda_n\).

Now set \(E := \bigoplus_{\alpha \in \Lambda_n} E(R/p_\alpha)\), and consider the diagram

\[
\begin{array}{cccccc}
0 & \longrightarrow & u_i M/u^{n+e_i} M & \longrightarrow & M/u^{n+e_i} M & \longrightarrow & M/u_i M & \longrightarrow & 0 \\
0 & \longrightarrow & E' & \longrightarrow & E' \oplus E & \longrightarrow & E & \longrightarrow & 0,
\end{array}
\]

in which the top row is the natural exact sequence, the bottom row is the canonical split exact sequence, the left-hand vertical homomorphism is

\[
\eta_n \circ \theta : u_i M/u^{n+e_i} M \longrightarrow E',
\]

and the right-hand vertical homomorphism is \(\eta_e : M/u_i M \longrightarrow E\).

Define \(\eta_{n+e_i} : M/u^{n+e_i} M \longrightarrow E' \oplus E\) by

\[
\eta_{n+e_i}(m + u^{n+e_i} M) = (\mu(m + u^{n+e_i} M), \eta_e(m + u_i M)) \quad \text{for all } m \in M.
\]

It is routine to check that when one inserts the \(R\)-homomorphism \(\eta_{n+e_i}\) as a central vertical map in the above diagram, then the resulting extended diagram is commutative; consequently, \(\eta_{n+e_i}\) is a monomorphism, and since \(E' \oplus E\) is isomorphic to a direct sum of finitely many indecomposable injective \(R\)-modules of the form \(E(R/p)\) with \(p \in \mathfrak{P}\), and since \(p_\beta^{h |n|} (\pi_\beta \circ \eta_e) = 0\) for all \(\beta \in \Lambda_{e_i}\), the inductive step is complete.
Let $0 \neq n \in \mathbb{N}_0$, and let $\tau_n : M \rightarrow M/u^nM$ be the natural epimorphism. The inductive argument above has shown that there exist a finite family $(p_\alpha)_{\alpha \in \Lambda_n}$ of prime ideals of \mathfrak{P} and an R-monomorphism

$$\eta_n : M/u^nM \rightarrow \bigoplus_{\alpha \in \Lambda_n} E(R/p_\alpha)$$

such that, for all $\beta \in \Lambda_n$, we have $p_\beta^{h[n]} \text{ Im}(\pi_\beta \circ \eta_n \circ \tau_n) = 0$. For $\alpha \in \Lambda_n$, let $Q_\alpha := \text{Ker}(\pi_\alpha \circ \eta_n \circ \tau_n)$; since $M/Q_\alpha \cong \text{Im}(\pi_\alpha \circ \eta_n \circ \tau_n)$, it follows from well-known properties of indecomposable injective R-modules (see [M, 18.4(iii), (v)], for example) that Q_α, if different from M, is a p_α-primary submodule of M such that $p_\alpha^{h[n]}M \subseteq Q_\alpha$. Therefore we can refine the expression

$$u^nM = \bigcap_{\alpha \in \Lambda_n} Q_\alpha$$

to a minimal primary decomposition of u^nM in M with the desired properties. \square

References

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom

E-mail address: r.y.sharp@sheffield.ac.uk