MATRICES OVER ORDERS IN ALGEBRAIC NUMBER FIELDS AS SUMS OF k-TH POWERS

S. A. KATRE AND SANGITA A. KHULE

(Communicated by David E. Rohrlich)

Dedicated to the memory of David R. Richman

Abstract. David R. Richman proved that for $n \geq k \geq 2$ every integral $n \times n$ matrix is a sum of seven k-th powers. In this paper, in light of a question proposed earlier by M. Newman for the ring of integers of an algebraic number field, we obtain a discriminant criterion for every $n \times n$ matrix ($n \geq k \geq 2$) over an order of an algebraic number field to be a sum of (seven) k-th powers.

1. Introduction

M. Newman [1] showed that, for $n \geq 2$, every matrix in $M_n \mathbb{Z}$ is a sum of 7 or 9 squares according as n is even or odd. He then posed the problem for the ring of integers (i.e. the maximal order) of an algebraic number field.

Vaserstein [3], [4] showed that every integral $n \times n$ matrix ($n \geq 2$) is a sum of three squares by proving the following

Theorem A. A matrix A in $M_n R$ (R a commutative ring with 1 and $n \geq 2$) is a sum of squares if and only if A is a sum of three squares if and only if $\text{tr.} A \equiv \text{square} \pmod{2R}$.

David R. Richman [2] showed that, for $n \geq k \geq 2$, every $n \times n$ integral matrix is a sum of seven k-th powers using his following key-result:

Theorem B. Let $n \geq 2, R$ a commutative ring with 1. The following are equivalent:

(i) M is a sum of k-th powers in $M_n R$.
(ii) M is a sum of seven k-th powers in $M_n R$.
(iii) $M \in M_n R$ and for every prime power p^e dividing k, there are elements $x_0 = x_0(p), \ldots, x_e = x_e(p)$ in R, such that

$$\text{tr.} M = x_0^p + px_1^{p^{e-1}} + p^2 x_2^{p^{e-2}} + \cdots + p^e x_e.$$

If F is a field of characteristic 0, then it follows from Theorems A and B that every matrix in $M_n F$ ($n \geq 2$) is a sum of three squares, and for $n \geq k \geq 2$, every matrix in $M_n F$ is a sum of seven k-th powers in $M_n F$. The same result also follows
for matrices over \(\mathbb{Z} \). However, if we consider the ring of integers or other orders in algebraic number fields, then we find that for some of these rings such a result is true, whereas for some other rings we get counter-examples. For instance, if \(R = \mathbb{Z}[i] \), then \(R/2R = \{0, 1, i, 1+i\} \). Here \(0 \) and \(1 \) are the only squares, and an \(n \times n \) matrix over \(\mathbb{Z}[i] \) \((n \geq 2)\) whose trace is \(\equiv i \) or \(1 + i \)\(\pmod{2R} \) is not a sum of squares in \(\mathbb{Z}[i] \). On the contrary, every element of \(R/3R \) is a cube, so every \(n \times n \) matrix \((n \geq 3)\) over \(\mathbb{Z}[i] \) is a sum of seven cubes. One has exactly the reverse situation for \(R = \mathbb{Z}[\omega] \), \(\omega = e^{2\pi i/3} \), and we get that every \(n \times n \) matrix \((n \geq 2)\) over \(\mathbb{Z}[\omega] \) is a sum of 3 squares, but for every \(n \geq 3 \), we find matrices over \(\mathbb{Z}[\omega] \) which are not sums of cubes in \(\mathbb{Z}[\omega] \).

In this paper, we take up this problem (earlier raised by Newman) for orders in algebraic number fields and obtain the following discriminant criterion:

Theorem 1. Let \(R \) be an order in an algebraic number field \(K \). Let \(n \geq k \geq 2 \). Then every \(n \times n \) matrix over \(R \) is a sum of \((seven)\) \(k \)-th powers if and only if \((k, \text{disc.} R) = 1 \).

2. Matrices over the ring of integers of an algebraic number field

Henceforth, let \(K \) denote an algebraic number field and \(\mathcal{O} \) the ring of integers of \(K \). The discriminant of \(K \) or the discriminant of \(\mathcal{O} \) denotes the discriminant of any integral basis of \(K \) (i.e. a \(\mathbb{Z} \)-basis of \(\mathcal{O} \)). In this section we prove

Proposition 1. Let \(n \geq k \geq 2 \). Every \(n \times n \) matrix over \(\mathcal{O} \) is a sum of \((seven)\) \(k \)-th powers if and only if \((k, \text{disc.} K) = 1 \).

For this, we first note the following lemmas:

Lemma 1. Let \(R \) be a commutative ring with 1. Let \(p \) be a prime. The following are equivalent:

(i) Every element of \(R \) is a \(p \)-th power \(\pmod{pR} \).

(ii) For every \(e \geq 1 \), given any \(x \in R \), there are elements \(x_0, x_1, \ldots, x_e \) depending upon \(p \) and \(e \) such that

\[
x = x_0^p + px_1^{p-1} + p^2x_2^{p-2} + \cdots + p^ex_e.
\]

Proof. (ii) \(\Rightarrow \) (i) is clear. To prove (i) \(\Rightarrow \) (ii), first prove by induction that \(a \equiv b \pmod{pR} \Rightarrow a^e \equiv b^e \pmod{p^{e+1}R} \). Then (ii) can be proved by induction by noting that if \(x_i \equiv y_i^p \pmod{pR} \), then \(x_i^{p^{e-i}} \equiv y_i^{p^{e-i}} \pmod{p^{e-i+1}R} \) so that \(p^i y_i^{(e+1) - i} \equiv p^i y_i^{(e+1) - i} \pmod{p^{e+1}R} \). \(\square \)

Lemma 2. Let \(R \) be a commutative ring with unity. Let \(n \geq k \geq 2 \). The following are equivalent:

(1) Every matrix in \(M_n R \) is a sum of \(k \)-th powers in \(M_n R \).

(2) Every matrix in \(M_n R \) is a sum of seven \(k \)-th powers in \(M_n R \).

(3) For every \(p \) dividing \(k \), every element of \(R \) is a \(p \)-th power \(\pmod{pR} \).

Proof. (1) \(\Leftrightarrow \) (2) is due to Theorem B of Richman. (1) \(\Leftrightarrow \) (3) is obtained by combining Theorem B and Lemma 1, and by noting that every \(x \in R \) is the trace of the diagonal matrix diag. \(\{x, 0, 0, \ldots, 0\} \). \(\square \)
Lemma 3. Let \(p \) be a prime. The following are equivalent:

(i) Every element of \(\mathcal{O} \) is a \(p \)-th power \(\pmod{p\mathcal{O}} \).

(ii) \(p = \text{disc.} K = 1 \).

Proof. \((\Leftarrow) \) Let \((p, \text{disc.} K) = 1 \). Then \(p \) is unramified in \(K \), so \(p\mathcal{O} = \varphi_1\varphi_2 \cdots \varphi_r \), where \(\varphi_1, \varphi_2, \ldots, \varphi_r \) are distinct primes of \(\mathcal{O} \). Then by the Chinese remainder theorem, \(\mathcal{O}/p\mathcal{O} \cong \mathcal{O}/\varphi_1 \oplus \cdots \oplus \mathcal{O}/\varphi_r \). Each \(\mathcal{O}/\varphi_i \) is a finite field of characteristic \(p \), so every element of \(\mathcal{O}/\varphi_i \) and hence of \(\mathcal{O}/p\mathcal{O} \) is a \(p \)-th power.

\((\Rightarrow) \) Suppose \(p \mid \text{disc.} K \). Then \(p \) is ramified in \(K \). Let \(\varphi \) be a prime divisor of \(p \) which ramifies. Take \(x \in \varphi \) such that \(x \not\equiv \varphi^2 \). Then \(x \not\equiv y^p \pmod{p\mathcal{O}} \) for any \(y \in \mathcal{O} \). For otherwise, \(\varphi \mid x \Rightarrow \varphi \mid y^p \Rightarrow \varphi \mid y \Rightarrow \varphi^2 \mid x \) (as \(\varphi^2 \mid p\mathcal{O} \)), a contradiction. \(\square \)

Proof of Proposition 1. Follows by combining Lemma 2 and Lemma 3.

Corollary 1. Let \(m \) be a squarefree integer. Let \(\mathcal{O} \) be the ring of integers of \(K = \mathbb{Q}(\sqrt{m}) \) \(\big(\text{i.e.} \mathcal{O} = \mathbb{Z}[\sqrt{m}] \text{ if } m \equiv 2,3 \pmod{4} \text{ and } \mathcal{O} = \mathbb{Z}[1 + \sqrt{m}]/2 \text{ if } m \equiv 1 \pmod{4} \big) \). Let \(n \geq k \geq 2 \). Then every \(n \times n \) matrix in \(M_n \mathcal{O} \) is a sum of (seven) \(k \)-th powers if and only if \((k, m) = 1 \) and either

(i) \(k \) is odd, or

(ii) \(k \) is even and \(m \equiv 1 \pmod{4} \).

Proof. \(\text{Disc.} \mathbb{Q}(\sqrt{m}) = \begin{cases} m, & \text{if } m \equiv 1 \pmod{4} \\ 4m, & \text{if } m \equiv 2,3 \pmod{4} \end{cases} \). \(\square \)

Corollary 2. Let \(m \geq 1 \) and \(\zeta_m \) be a primitive \(m \)-th root of unity. The ring of integers of the cyclotomic field \(K = \mathbb{Q}(\zeta_m) \) is \(\mathcal{O} = \mathbb{Z}[\zeta_m] \).

Let \(n \geq k \geq 2 \). Then every \(n \times n \) matrix over \(\mathbb{Z}[\zeta_m] \) is a sum of (seven) \(k \)-th powers if and only if either

(i) \((k, m) = 1 \), or

(ii) \(m \equiv 2 \pmod{4} \) and \((k, m) = 2 \).

Proof. Note that \(\mathbb{Q}(\zeta_m) = \mathbb{Q}(\zeta_{2m}) \), if \(m \) is odd. Also for \(m \not\equiv 2 \pmod{4} \), the prime divisors of \(\text{disc.} \mathbb{Q}(\zeta_m) \) are the same as the prime divisors of \(m \). \(\square \)

3. Matrices over orders in algebraic number fields

An order in a algebraic number field \(K \) is a ring containing \(1 \), and which is a finitely generated \(\mathbb{Z} \)-submodule of \(K \) of maximum rank, i.e. of rank \(N = \deg(K/\mathbb{Q}) \). One notes that \(\mathcal{O} \) is an order of \(K \) and \(\mathcal{O} \) contains every order; hence \(\mathcal{O} \) is called the maximal order of \(K \). The discriminant of an order \(R \) is defined to be the discriminant of any \(\mathbb{Z} \)-basis of \(R \).

Lemma 4. If \(K \) is a number field of degree \(N \), \(\mathcal{O} \) the ring of integers of \(K \), and \(R \) an order of \(K \), then there are a \(\mathbb{Z} \)-basis \(\theta_1, \theta_2, \ldots, \theta_N \) of \(\mathcal{O} \) and a \(\mathbb{Z} \)-basis \(\alpha_1, \alpha_2, \ldots, \alpha_N \) of \(R \) such that \(\alpha_i = f_i \theta_i \), \(f_i \in \mathbb{Z} \), \(f_i > 0 \), and moreover

\[f_1 \mid f_2 \mid \cdots \mid f_N. \]

Proof. Start with any \(\mathbb{Z} \)-bases \(\eta_1, \ldots, \eta_N \) and \(\beta_1, \ldots, \beta_N \) of \(\mathcal{O} \) and \(R \) respectively. Let \(A \in M_N \mathbb{Z} \) such that \([\beta_1, \ldots, \beta_N] = [\eta_1, \ldots, \eta_N] A \). As \(\mathbb{Z} \) is a PID, there exist unimodular matrices \(P \) and \(Q \) such that \(PAQ = \text{diag.} [f_1, f_2, \ldots, f_N] \) is the Smith normal form of \(A \), so that \(f_1 \mid f_2 \mid \cdots \mid f_N \). As rank of \(A \) is \(N \), each \(f_i \neq 0 \). We
may also assume that each \(f_i > 0 \). Now
\[
[\beta_1, \cdots, \beta_N]Q = [\eta_1, \cdots, \eta_N]P^{-1}(PAQ).
\]
Call \([\beta_1, \cdots, \beta_N]Q = [\alpha_1, \cdots, \alpha_N]\) and \([\eta_1, \cdots, \eta_N]P^{-1} = [\theta_1, \cdots, \theta_N]\).

\[\square \]

Lemma 5. With the bases of \(O \) and \(R \) as in Lemma 4, one has

\[
\text{index of } R \text{ in } O = f_1f_2 \cdots f_N \text{ and } \text{disc}.R = (f_1f_2 \cdots f_N)^2 \text{disc}.K.
\]

Proof. Clear. \(\square \)

Lemma 6. Let \(R \) be a commutative ring with 1. Let \(p \) be a prime and \(R/pR \) a finite ring. The following are equivalent:

(i) Every element of \(R \) is a \(p \)-th power (mod \(pR \)).

(ii) \(x \in R, \ x^p \in pR \Rightarrow x \in pR. \)

Proof. Let the map \(\phi : R/pR \to R/pR \) be given by \(\alpha \to \alpha^p. \) Then \(\phi \) is a homomorphism. Now

(i) \(\iff \phi \) is onto \(\iff \phi \) is one-one (as \(R/pR \) is finite) \(\iff \ker\phi \) is trivial \(\iff (ii). \)

\[\square \]

Proof of Theorem 1. (\(\Leftarrow \)) Suppose \((k, \text{disc}.R) = 1. \) Let \(p \) be any prime divisor of \(k \). Then \((p, \text{disc}.R) = 1, \) and by Lemma 5, \((p, \text{disc}.K) = 1. \) As \(R/pR \) is finite, in view of Lemmas 2 and 6, it suffices to prove that \(x \in R, x^p \in pR \Rightarrow x \in pR. \) Thus let \(x \in R, x^p \in pR. \) Then \(x^p \in pO. \) As \((p, \text{disc}.K) = 1, \) by Lemma 3 and Lemma 6, \(x \in pO. \) Let \(1 \alpha_1, \cdots, \alpha_N \) be bases of \(O \) and \(R \) respectively, chosen as in Lemma 4. As \(x \in R, \) let \(x = \sum_{i=1}^{N} a_i \alpha_i. \) Then \(x = \sum_{i=1}^{N} a_i f_i \). As \(x \in pO, \) there is \(b_i \in Z \) such that \(a_i f_i = pb_i (1 \leq i \leq N). \) As \((p, \text{disc}.R) = 1, \) by Lemma 5, \((p, f_i) = 1 \), so \(p \mid a_i \) for each \(i. \) Hence \(x \in pR. \)

(\(\Rightarrow \)) Suppose \((k, \text{disc}.R) \neq 1. \) Let \(p \) be a prime such that \(p \mid (k, \text{disc}.R). \) Now, \(\text{disc}.R = (f_1 \cdots f_N)^2 \text{disc}.K. \)

Case (i). Suppose \((p, f_i) = 1 \) for all \(1 \leq i \leq N. \) Then \(p \mid \text{disc}.K. \)

Assume, for contradiction, that every matrix in \(M_nR \) is a sum of \(k \)-th powers. Then by Lemma 2, every element of \(R \) is a \(p \)-th power mod \(pR, \) say \(a_i \equiv \gamma_i^p \) (mod \(pR \)). Let \(b_i, c_i \in Z \) such that \(1 = b_i p + c_i f_i. \) Then \(\theta_i = b_i p \theta_i + c_i f_i \theta_i \equiv c_i a_i \equiv c_i^p \gamma_i^p \) (mod \(pO \)) (noting that \(c_i \equiv c_i^p \) (mod \(pZ \)). Thus if \(x = \sum_{i=1}^{N} a_i \theta_i \in O \) with \(a_i \in Z, \) then \(x \equiv (\sum a_i c_i \gamma_i)^p \) (mod \(pO \)). This gives \((p, \text{disc}.K) = 1, \) by Lemma 3. Contradiction.

Case (ii). Suppose \(p \mid f_j \) for some \(j. \) Due to the choice of the \(f_j \)’s as in Lemma 4, we have \(f_1 | f_2 | \cdots | f_N, \) so \(p \mid f_N, \) Also, \(f_N \theta_i \in R \) for all \(1 \leq i \leq N, \) and so \(f_N \alpha \in R, \) for every \(\alpha \in O. \) In particular \(\beta = f_N(f_N^{-2} \theta_n^p) \in R. \) As \(p \mid f_N, \alpha^p_n = f_N \beta \in pR. \) However, \(\alpha_N \in R, \) as \(\alpha_1, \cdots, \alpha_N \) is a \(Z \)-basis of \(R. \) Hence from Lemma 2 it follows that there are matrices in \(M_nR \) that are not sums of \(k \)-th powers in \(M_nR. \)

\[\square \]

Remark 1. Let \((k, \text{disc}.R) > 1. \) Let \(p \) be the smallest prime divisor of \((k, \text{disc}.R). \)

Then, for every \(n \geq p, \) there are \(n \times n \) matrices (which are not sums of \(p \)-th powers, and hence) which are not sums of \(k \)-th powers in \(M_nR. \)

Remark 2. Combining Theorem A and Theorem 1, we see that for an order \(R, \) if \(\text{disc}.R \) is odd (i.e. \(\equiv 1 \) (mod 4)), then for every \(n \geq 2, \) every matrix in \(M_nR \) is a sum of three squares. Also, if \(\text{disc}.R \) is even (i.e. \(\equiv 0 \) (mod 4)), then for every \(n \geq 2, \) there are matrices in \(M_nR \) which are not sums of squares in \(M_nR. \)
Corollary 3. Let \(m \) be a squarefree integer, and \(f \) denote a positive integer. If \(m \equiv 1 \mod 4 \), the orders of \(\mathbb{Q}(\sqrt{m}) \) are \(R_f = \mathbb{Z} + f((1 + \sqrt{m})/2)\mathbb{Z} \). If \(m \equiv 2, 3 \mod 4 \), the orders are \(R_f = \mathbb{Z} + f\sqrt{m}\mathbb{Z} \). Then for \(n \geq k \geq 2 \) every \(n \times n \) matrix over \(M_n R_f \) is a sum of (seven) \(k \)-th powers if and only if \((k, fm) = 1 \) and either (i) \(k \) is odd or (ii) \(k \) is even and \(m \equiv 1 \mod 4 \).

Proof. If \(m \equiv 1 \mod 4 \), \(\text{disc.} R_f = f^2 m \).
If \(m \equiv 2, 3 \mod 4 \), \(\text{disc.} R_f = 4f^2 m \). \(\square \)

Example 1. \(\text{Disc.} \mathbb{Z}[\sqrt{m}] = 4m \), when \(m \) is not a perfect square. Hence for every \(n \geq 2 \), there are matrices over \(\mathbb{Z}[\sqrt{m}] \) which are not sums of squares in \(M_n \mathbb{Z}[\sqrt{m}] \) (although they have to be sums of three squares in \(M_n \mathbb{Q}(\sqrt{m}) \)).

Example 2. \(\text{Disc.} \mathbb{Z}[i] = -4 \), so for every \(n \geq 2 \), there are \(n \times n \) matrices over \(\mathbb{Z}[i] \), which are not sums of squares. Hence for \(k \) even, for every \(n \geq 2 \), there are \(n \times n \) matrices over \(\mathbb{Z}[i] \) which are not sums of \(k \)-th powers. However, for \(k \) odd, for every \(n \geq k \), every \(n \times n \) matrix over \(\mathbb{Z}[i] \) is a sum of seven \(k \)-th powers.

References

Department of Mathematics, University of Pune, Pune-411007, India
E-mail address: sakatre@math.unipune.ernet.in