UNIVERSAL \mathbb{Z}-LATTICES OF MINIMAL RANK

BYEONG-KWEON OH

(Communicated by David E. Rohrlich)

Abstract. Let $U_{\mathbb{Z}}(n)$ be the minimal rank of n-universal \mathbb{Z}-lattices, by which we mean positive definite \mathbb{Z}-lattices which represent all positive \mathbb{Z}-lattices of rank n. It is a well known fact that $U_{\mathbb{Z}}(n) = n + 3$ for $1 \leq n \leq 5$. In this paper, we determine $U_{\mathbb{Z}}(n)$ and find all n-universal lattices of rank $U_{\mathbb{Z}}(n)$ for $6 \leq n \leq 8$.

1. Introduction

A positive definite \mathbb{Z}-lattice (or simply a lattice) is said to be n-universal if it represents all positive definite \mathbb{Z}-lattices of rank n. It is well known that the ranks of n-universal lattices should be greater than or equal to $n + 3$. In fact, for each n, $1 \leq n \leq 5$, the lattice I_{n+3} is n-universal because I_{n+3} has class number 1 and is universal over the p-adic integer ring \mathbb{Z}_p for all p, where I_n is the lattice \mathbb{Z}^n equipped with the standard inner product (see [10], [12] and [15]). For $n \geq 6$, however, no diagonal lattice can be n-universal. Moreover, there does not exist a lattice of rank $n + 3$ which has class number 1 and represents all integral lattices of rank n over \mathbb{Z}_p for all p (see [18], [20]). To be more precise, we define $U_{\mathbb{Z}}(n) = \min \{ \text{rank}(L) \mid L \text{ is } n\text{-universal} \}$.

Let L_1, L_2, \ldots, L_k be all unimodular lattices of rank $n + 3$ up to isometry. Then the lattice $L_1 \perp L_2 \perp \cdots \perp L_k$ is n-universal and therefore $U_{\mathbb{Z}}(n)$ exist for all n. As was mentioned above, $U_{\mathbb{Z}}(n) = n + 3$ for $1 \leq n \leq 5$. In this paper, we investigate the minimal rank $U_{\mathbb{Z}}(n)$ of n-universal \mathbb{Z}-lattices for $6 \leq n \leq 10$. We prove that $U_{\mathbb{Z}}(n) = 13, 15, 16, 28, 30$ for $n = 6, 7, 8, 9, 10$ respectively, and find all $6, 7, 8$-universal \mathbb{Z}-lattices of rank $13, 15, 16$, respectively. For the complete list of $1, 2$-universal \mathbb{Z}-lattices of minimal rank, see [6], [7], [16] and [21].

In [1], Bannai proved that most unimodular lattices (even or odd) have trivial automorphism groups if the rank is sufficiently large, and that such lattices are indecomposable. If a lattice L is n-universal, then L must represent all indecomposable unimodular lattices of rank n as direct summands. So from this we may guess that $U_{\mathbb{Z}}(n)$ grows very quickly.

Remark. Note that if we define $U_{\mathbb{Q}}(n)$ to be the minimal rank of n-universal positive definite quadratic space over \mathbb{Q}, then $U_{\mathbb{Q}}(n) = n + 3$ for all n.

Received by the editors April 27, 1998.

1991 Mathematics Subject Classification. Primary 11E12, 11H06.

Key words and phrases. n-universal lattice, $U_{\mathbb{Z}}(n)$, root lattice, additively indecomposable.

The author was partially supported by GARC and BSRI-98-1414.

©1999 American Mathematical Society

683
We adopt terminologies and notations from [2], [3] and [14]. By \(l \to L \) we mean that the lattice \(L \) represents the lattice \(l \). For a sublattice \(l \) of \(L \) \(\perp M \) of the form \(l = \mathbb{Z}(x_1 + y_1) + \mathbb{Z}(x_2 + y_2) + \cdots + \mathbb{Z}(x_n + y_n) \) for \(x_i \in L \) and \(y_i \in M \), we define sublattices \(l(L) = \mathbb{Z}x_1 + \mathbb{Z}x_2 + \cdots + \mathbb{Z}x_n \) and \(l(M) = \mathbb{Z}y_1 + \mathbb{Z}y_2 + \cdots + \mathbb{Z}y_n \). A lattice \(l \) is said to be additively indecomposable if either \(l(L) = 0 \) or \(l(M) = 0 \) whenever \(l \to L \perp M \).

2. Determination of \(U_\mathbb{Z}(6) \)

We assume that \(L \) is a 6-universal \(\mathbb{Z} \)-lattice. Since \(L \) must represent the lattice \(I_6 \), it decomposes into \(I_6 \perp L' \). Furthermore, since the root lattice \(E_6 \) is additively indecomposable, it should be represented by \(L' \). Therefore \(U_\mathbb{Z}(6) \geq 12 \). Suppose rank \(L = 12 \); then \(L = I_6 \perp E_6 \). But this cannot represent the root lattice \(A_6 \). On the other hand, the lattice \(E_6 \perp I_{10} \) is 6-universal because \(E_6 \) is the unique additively indecomposable lattice of rank 6 and \(E_6^{(2)} = E_8 \) is represented by \(I_8 \), where \(E_6^{(2)} \) is the lattice obtained from scaling \(E_6 \) by 2 (see [8] and [11]). Therefore \(13 \leq U_\mathbb{Z}(6) \leq 16 \). If \(L \) is 6-universal and rank \(L = 13 \), then \(L \) must be equal to \(E_6 \perp I_7 \) or \(E_7 \perp I_6 \) because the only lattice of rank 7 which represents both \(A_6 \) and \(E_6 \) is \(E_7 \). In this section, we prove that \(E_6 \perp I_7 \) and \(E_7 \perp I_6 \) are indeed 6-universal lattices of rank 13.

Lemma 2.1. If a lattice \(L \) of rank \(n + 3 \) has a square free determinant and its quadratic norm \(Q(L) \) is not contained in \(2\mathbb{Z} \), then every lattice \(l \) of rank \(n \) is represented by a lattice in the genus of \(L \).

Proof. The local lattice \(L_p \) is \(n \)-universal over \(\mathbb{Z}_p \) by [13]. So the lemma follows directly from [14, 102:9]. (See also [4].)

Now, we prove the following technical lemma, which is useful in the sequel.

Lemma 2.2. Let \(l \) be a lattice of rank \(n \) which is represented by \(I_m, m \geq 7 \).

1. If \(5 \leq n \leq m - 2 \), then \(l \) is represented by \(D_{n-i} \perp I_{m-n+i} \) for some \(i = 1, 2, \ldots, n-1 \), where \(D_k \) is the root lattice of type \(D \) for \(k \geq 4 \), \(D_3 = A_3 \), \(D_2 = A_1 \perp A_1 \), and \(D_1 = \{0\} \).

2. If \(n = m - 1 \), then \(l \) is represented by \(D_{n+1-i} \perp I_i \) for some \(i = 0, 1, 2, \ldots, n \).

Furthermore, if \(l \) is represented by \(D_{n+1-i} \perp I_i \) only for \(i = 0 \) or 1 and \(n \equiv i \) (mod 2), then \(dl \equiv n - i + 1 \) (mod 4).

Proof. We only prove (1). The proof of (2) is quite similar to that of (1). It suffices to show this when \(m \) is equal to \(n+2 \). We may assume that \(l = \bigoplus_{i=1}^{n} \mathbb{Z}(\sum_{k=1}^{m} a_{ik} c_k) \) is a sublattice of \(I_m \), where the \(e_i \)'s are the standard orthonormal basis of \(I_m \). By suitable base change, we may also assume that \(a_{ij} = 0 \) for all \(i, j \) satisfying \(i \geq 2 \) and \(j \geq m+2-i \), and that the \(a_{k(m+1-i)} \)'s are even for \(1 \leq k \leq i-1 \) if \(a_{i(m+1-i)} \) is odd for some \(i \geq 2 \). For a subset \(J = \{j_1, j_2, \ldots, j_r \} \subseteq \{1, 2, \ldots, m\} \), we define the lattice \(M_J = \bigoplus_{i=1}^{n} \mathbb{Z}(\sum_{t=1}^{r} a_{ij_t} c_{j_t}) \). We let \(J = \{m\} \) if \(a_{1m} \) is even. Then \(M_J = \mathbb{Z}(a_{1m} c_m) \to D_1 \). Assume that \(a_{i(m+1-i)} \) is even for some \(i, 2 \leq i \leq n-1 \). Let \(i \) be the smallest such. Let \(J \) be the set containing \((m+1-i) \) and all \((m-k+1) \)'s, \(1 \leq k \leq i-1 \), for which the \(a_{k(m+1-i)} \)'s are odd. Then \(M_J \to D_{J | J} \) and hence \(l \to D_{J | J} \perp I_{m-J | J} \). Therefore we may assume that the \(a_{i(m+1-i)} \)'s are odd for all \(i, 1 \leq i \leq n-1 \).

Now assume that \(a_{nj} \) is even for some \(j, 1 \leq j \leq 3 \). If not all \(a_{kj} \)'s are odd for \(1 \leq k \leq n-1 \), then \(M_J \to D_{J | J} \) as above. Hence if one of \(a_{nj} \) is even for \(j = 1, 2, 3 \),
then we may assume that the a_{kj}'s are all odd for $k = 1, 2, \ldots, n - 1$. If two of
the a_{n}'s are even, then $l \rightarrow D_{2} \perp I_{m-2}$. Therefore, without loss of generality,
we may assume that a_{n} is odd and a_{k} are all even for $k = 1, 2, \ldots, n - 1$. For
a fixed s, $s = 1$ or 2, if the number of a_{k}'s which are odd is less than $n - 1$ for
$k = 1, 2, \ldots, n$, then $l \rightarrow D_{s|j|} \perp I_{m-|j|}$, where J is the set containing s and the
$(m - k + 1)$'s for which the a_{k}'s are odd. In the remaining case, it is easy to see
that $l \rightarrow D_{k} \perp I_{m-k}$, where k is 2 or 3 or 4.

Theorem 2.3. The lattice $E_{7} \perp I_{6}$ is 6-universal. In particular, $U_{Z}(n) = 13$.

Proof. First observe that $\text{gen}(I_{8} \perp A_{1}) = \{ I_{8} \perp A_{1}, E_{7} \perp I_{2} \}$. Hence it suffices
to show that every sublattice l of $A_{1} \perp I_{8}$ of rank 6 is represented by $E_{7} \perp I_{6}$ by
Lemma 2.1. By Lemma 2.2 (1), $l(l(I_{8}) \rightarrow D_{5-i} \perp I_{3+i}$, for some $i = 0, 1, \ldots, 4$.
If $i \neq 4$, then we have

$$
l \rightarrow A_{1} \perp I_{8} \rightarrow A_{1} \perp D_{5-i} \perp I_{i+3} \rightarrow E_{7} \perp I_{6}.
$$

If $i = 4$, then $l' = l(l(I_{8}) \rightarrow D_{1} \perp I_{7}$. We apply Lemma 2.2 (2) to $l'(I_{7})$. By similar
reasoning as above, we need only consider the case when $l'(I_{7}) \rightarrow D_{7}$. This indeed
implies $l \rightarrow A_{1} \perp D_{1} \perp D_{7}$ and $d(l(D_{7})) \equiv 1 \pmod{7}$. For all prime p (including
∞), since $l(D_{7})_{p}$ is represented by $(E_{7} \perp A_{1})_{p}$ and the class number of $E_{7} \perp A_{1}$ is
1 [19], we have $l(D_{7}) \rightarrow E_{7} \perp A_{1}$, which proves the theorem.

In order to prove that $E_{6} \perp I_{7}$ is the other 6-universal lattice of rank 13, we
need the following lemma.

Lemma 2.4. If a Z-lattice l of rank 6 is not represented by a sum of squares, then
$l \rightarrow E_{6} \perp I_{5}$.

Proof. We may assume that $l \rightarrow E_{7} \perp I_{2}$. By [8], we may also assume that
d($l(E_{7})$) is an odd determinant. Since the class number of $E_{6} \perp A_{2}$ is 1, it can
easily be checked that $l(E_{7}) \rightarrow E_{6} \perp A_{2}$, and hence $l \rightarrow E_{6} \perp I_{5}$ if $d(l(E_{7})) \neq 1$
(mod 3). So we assume that $d(l(E_{7})) \equiv 1 \pmod{6}$. By considering local conditions
for representation, we can conclude that $l(E_{7}) \rightarrow \text{gen}(E_{6} \perp I_{2})$ and consequently
$l \rightarrow E_{6} \perp I_{5}$ from the fact that $\text{gen}(E_{6} \perp I_{2}) = \{ E_{6} \perp I_{5}, \langle 3 \rangle \perp I_{7} \}$.

Remark. Ko conjectured [11] that if l is of rank 6 and represented by a sum of
squares, then $l \rightarrow I_{9}$, and if l is of rank 6 and not represented by a sum of squares,
then $l \rightarrow E_{6} \perp I_{3}$ and $l(E_{6}) = E_{6}$. But both conjectures are false because $l = A_{2} \perp
A_{2} \perp A_{1}10[1, 2]$ is represented by I_{10} but not by I_{9} for the former conjecture (see
[8], [9] for further results) and $l = D_{5}124[1, 2]$, which is not represented by a sum of
squares, is represented by $E_{6} \perp I_{3}$ but does not satisfy $l(E_{6}) = E_{6}$.

Theorem 2.5. The lattice $E_{6} \perp I_{7}$ is 6-universal.

Proof. Let l be a Z-lattice of rank 6. By the above lemma, we may assume that l
is represented by a sum of squares, and hence by [8] we may assume that $l \rightarrow I_{10}$.
This implies that $l \rightarrow D_{5-i} \perp I_{5+i}$ for some $i = 0, 1, \ldots, 4$ by Lemma 2.2 (1). If
$i \neq 3, 4$, then $l \rightarrow D_{5-i} \perp I_{5+i} \rightarrow E_{6} \perp I_{7}$. The desired conclusion for the case
when $i = 3, 4$ can be deduced by applying Lemma 2.2 again if necessary.
3. Determination of $U_Z(n)$ for $7 \leq n \leq 10$

Theorem 3.1. The lattice $E_8 \perp I_8$ is a unique 8-universal Z-lattice of rank 16, and $U_Z(8) = 16$.

Proof. Note that the lattice $E_8 \perp I_8$ is the unique candidate of 8-universal Z-lattice of rank 16, for E_8 is the unique additively indecomposable Z-lattice of rank 8. Let l be a Z-lattice of rank 8. Since $l \rightarrow \text{gen}(E_8 \perp I_3) = \{ E_8 \perp I_3, I_{11} \}$, we may assume that $l \rightarrow I_{11}$. By Lemma 2.2, we may further assume that $l \rightarrow A_1 \perp A_1 \perp D_9$ and $d(l(D_9)) \equiv 1 \pmod{8}$. Clearly, $l(D_9)$ is contained in one of the sublattices of I_9 of rank 9 with determinant 9. The following are all such sublattices of I_9:

\[
\begin{align*}
9 \perp & \quad I_8, A_118[12] \perp I_7, A_2 \perp \langle 3 \rangle \perp I_6, A_336[14] \perp I_5, A_445[25] \perp I_4, \\
A_56[32] & \perp I_3, A_663[37] \perp I_2, A_772[38] \perp I_1, \text{ and } A_89[33].
\end{align*}
\]

One can easily check that if $l(D_9)$ is represented by one of these lattices except the first one, then $l \rightarrow E_8 \perp I_8$. So assume that $l(D_9) \rightarrow \langle 9 \rangle \perp I_8$. Then $l(D_9)$ is represented by $Z(e_1 - e_2) + Z(e_2 - e_3) + \cdots + Z(e_7 - e_8) + Z(e_8 - 3e_9) + Z(e_8 + 3e_9)$ and hence is represented by $A_8 \perp I_5$. Therefore l is represented by $E_8 \perp I_8$.

Remark. In [5], Conway and Schneeberger proved the so-called 15-Theorem, i.e., every integral Z-lattice which represents 1, 2, 3, 5, 6, 7, 10, 14, 15 is 1-universal. An analogy for 8-universal Z-lattices can be deduced from Theorem 3.1: Every Z-lattice which represents both I_8 and E_8 is 8-universal.

Corollary 3.2. The lattice $E_8 \perp I_7$ is 7-universal and $U_Z(7) = 15$.

Proof. The 7-universality of $E_8 \perp I_7$ follows from the above theorem. Consider the only possible candidate for a 7-universal Z-lattice of rank 14; namely, $E_7 \perp I_7$. But this cannot represent $A_677[2\frac{1}{2}]$, and the result follows.

Theorem 3.3. There are exactly three 7-universal Z-lattices of rank 15. They are $E_8 \perp I_7, E_7 \perp I_8$, and $E_76[1\frac{1}{2}] \perp I_7$.

Proof. Suppose that L is a 7-universal Z-lattice of rank 15. Then $L = I_7 \perp L'$ and rank $(L') = 8$. Clearly, $E_7 \rightarrow L'$. If the lattice L' represents 1, then $L = I_8 \perp E_7$. So assume that L' does not represent 1. Since $A_677[2\frac{1}{2}] \rightarrow L$, either $D_7 \rightarrow L'$ or $A_677[2\frac{1}{2}] \rightarrow L'$. In the first case, L' must be E_8, for E_8 is the only lattice of rank 8 which represents E_7 and D_7 simultaneously. In the second case, since the minimum quadratic norm of the dual lattice E_7^{\perp} of E_7 is $\frac{1}{2}$, it can be easily deduced that L' must be $E_76[1\frac{1}{2}]$. Hence we have exactly three candidates $E_8 \perp I_7, E_7 \perp I_8$ and $E_76[1\frac{1}{2}] \perp I_7$ for 7-universal Z-lattices of minimal rank, 15.

It suffices to show the 7-universality for the latter two. First, we show that $E_7 \perp I_8$ is 7-universal. Let l be any Z-lattice of rank 7. Note that

\[
l \rightarrow \text{gen}(E_8 \perp I_2) = \{ E_8 \perp I_2, I_{10} \}.
\]

If $l \rightarrow I_{10}$, it is easy to check that $l \rightarrow E_7 \perp I_8$ by Lemma 2.2(1). So assume that $l \rightarrow E_8 \perp I_2$. Note that $l(E_8)$ can be represented by one of the sublattices of E_8 with determinant 4; the only such sublattices are $E_7 \perp A_1$ and D_8. Therefore the 7-universality of $E_7 \perp I_8$ follows immediately.
Now we prove that $E_7[1 \frac{1}{2}] \perp I_7$ is 7-universal. Note that for every \mathbb{Z}-lattice l of rank 7

$$l \rightarrow \text{gen}(E_7[1 \frac{1}{2}] \perp I_2) = \{E_7[1 \frac{1}{2}] \perp I_2, A_2 \perp I_8\}.$$

So we assume that $l \rightarrow A_2 \perp I_8$. Then $l(I_8)$ is contained in one such sublattice of I_8 of rank 8 with determinant 9. It is easy to check that $l \rightarrow E_7[1 \frac{1}{2}] \perp I_7$ if $l(I_8)$ is contained in one such sublattice except $A_772[3 \frac{1}{2}]$. Therefore, we may restrict ourselves to the case when

$$l(I_8) \rightarrow A_772[3 \frac{1}{8}] = \{\sum_{i=1}^{8} a_ie_i \mid \sum_{i=1}^{8} a_i \equiv 0 \pmod{3}\}.$$

Furthermore, we may assume that $d(l(I_8)) \equiv 2 \pmod{3}$, for we may assume that $l(I_8)$ is not contained in any sublattice of I_8 of rank 8 with determinant 9 other than $A_772[3 \frac{1}{8}]$. By Lemma 2.2, we obtain $l \rightarrow D_{8-i} \perp I_i \perp A_2$ for $i = 0, 1, \ldots, 7$. If $i \neq 0, 1$, then this implies $l \rightarrow E_7[1 \frac{1}{2}] \perp I_7$, as desired. If $i = 0$, then

$$l(I_8) \rightarrow A_772[2 \frac{1}{4}] = \{\sum_{i=1}^{8} a_ie_i \mid \sum_{i=1}^{8} a_i \equiv 0 \pmod{6}\} \rightarrow E_7[1 \frac{1}{2}] \perp I_3$$

and hence $l \rightarrow E_7[1 \frac{1}{2}] \perp I_7$. If $i = 1$, then we may assume that $d(l(I_8)) \equiv 11 \pmod{12}$ by Lemma 2.2(2). Therefore

$$l(I_8) \rightarrow \text{gen}(A_2 \perp I_7) = \{A_2 \perp I_7, E_7[1 \frac{1}{2}] \perp I_1\}.$$

Consequently, $l \rightarrow E_7[1 \frac{1}{2}] \perp I_7$ as desired.

\[\square\]

Theorem 3.4. The lattice $E_8 \perp I_9 \perp D_{10}A_1[11]$ is a 9-universal \mathbb{Z}-lattice and $U_2(9) = 28$.

Proof. Suppose that L is a 9-universal \mathbb{Z}-lattice. Then L must decompose into $E_8 \perp I_9 \perp L'$. There exist exactly two additively indecomposable \mathbb{Z}-lattices of rank 9, namely, $A_663[4 \frac{1}{2}]$ and $A_4A_415[33 \frac{1}{2}]$ (see [17]). Since L' must represent these lattices, the rank of L' is greater than 9. Suppose that the rank of L' is 10. Then $A_9 \rightarrow L'$, since $1 \notin Q(L')$. Furthermore, L' has a vector of norm 3, since $A_863[4 \frac{1}{2}] \rightarrow L'$. The possible candidates for L' satisfying these properties are the following:

$$A_9210[1 \frac{1}{10}], A_935[2 \frac{1}{5}], A_990[3 \frac{1}{10}], A_915[4 \frac{1}{5}], A_9A_1[5 \frac{1}{2}], \text{ and } A_9 \perp (3).$$

Among these lattices, only $A_915[4 \frac{1}{5}]$ and $A_9A_1[5 \frac{1}{2}]$ can represent $A_863[4 \frac{1}{2}]$ and $A_4A_415[33 \frac{1}{2}]$ simultaneously. But neither $E_8 \perp I_9 \perp A_915[4 \frac{1}{5}]$ nor $E_8 \perp I_9 \perp A_9A_1[5 \frac{1}{2}]$ can represent $A_9117[2 \frac{3}{2}]$. Therefore the rank of L' is greater than 10. On the other hand, it can be easily checked by using Lemma 2.2 that every \mathbb{Z}-lattice l of rank 9, which is represented by $A_1 \perp I_{11}$, is represented by $E_8 \perp D_{10}A_1[11] \perp I_9$. Hence from

$$\text{gen}(A_1 \perp I_{11}) = \{A_1 \perp I_{11}, E_7 \perp I_5, D_{10}A_1[11] \perp I_1, E_8 \perp I_3 \perp A_1\}$$

we may conclude that $E_8 \perp D_{10}A_1[11] \perp I_9$ is 9-universal, and the result follows.

\[\square\]

Theorem 3.5. The lattice $E_8 \perp I_{10} \perp D_{12}[1]$ is 10-universal and $U_2(10) = 30$.

Proof. Suppose that L is a 10-universal \mathbb{Z}-lattice. The lattice L must decompose into $E_8 \perp I_{10} \perp L'$. The lattices $D_9[1\frac{1}{2}]$, $A_9A_1[51]$ are additively indecomposable \mathbb{Z}-lattices of rank 10 (see [17]), so L' must represent these lattices. Suppose that the rank of L' is 11; then $A_{10} \rightarrow L'$, since $1 \notin Q(L')$. But there does not exist a lattice of rank 11 which represents the lattices A_{10} and $D_9[1\frac{1}{2}]$ simultaneously. Hence the rank of L' is greater than 11. On the other hand, since

$$\text{gen}(I_{13}) = \{I_{13}, E_8 \perp I_5, D_{12}[1] \perp I_1\},$$

it can be easily checked by applying Lemma 2.2 that $E_8 \perp I_{10} \perp D_{12}[1]$ is 10-universal. Therefore the result follows.

Remark. It seems to be a very difficult problem to find the exact value of $U_\mathbb{Z}(n)$ for large n. For example, one can easily obtain $U_\mathbb{Z}(24) \geq 6673$ from a simple counting of all indecomposable unimodular \mathbb{Z}-lattices of rank less than or equal to 24 (see [2]).

Acknowledgements

This article is a part of the author’s doctoral thesis. I wish to thank my doctoral supervisor M-H. Kim for continuous encouragement.

References

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL, 151-742, KOREA

E-mail address: oandhan@math.snu.ac.kr