Universal $\mathbb {Z}$-lattices of minimal rank
HTML articles powered by AMS MathViewer
- by Byeong-Kweon Oh
- Proc. Amer. Math. Soc. 128 (2000), 683-689
- DOI: https://doi.org/10.1090/S0002-9939-99-05254-5
- Published electronically: July 6, 1999
- PDF | Request permission
Abstract:
Let $U_{\mathbb {Z}}(n)$ be the minimal rank of $n$-universal $\mathbb {Z}$-lattices, by which we mean positive definite $\mathbb {Z}$-lattices which represent all positive $\mathbb {Z}$-lattices of rank $n$. It is a well known fact that $U_{\mathbb {Z}}(n)=n+ 3$ for $1 \le n \le 5$. In this paper, we determine $U_{\mathbb {Z}}(n)$ and find all $n$-universal lattices of rank $U_{\mathbb {Z}}(n)$ for $6 \le n \le 8$.References
- E. Bannai, Positive definite unimodular lattices with trivial automorphism groups, Ohio State Univ., Thesis, 1988.
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369, DOI 10.1007/978-1-4757-2016-7
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. I. Quadratic forms of small determinant, Proc. Roy. Soc. London Ser. A 418 (1988), no. 1854, 17–41. MR 953276
- J. H. Conway and N. J. A. Sloane, Low-dimensional lattices. V. Integral coordinates for integral lattices, Proc. Roy. Soc. London Ser. A 426 (1989), no. 1871, 211–232. MR 1030461
- J.H. Conway, W. Schneeberger, A $15$-theorem for universal quadratic forms, to appear.
- B.M. Kim, M-H. Kim, S. Raghavan, $2$-universal positive definite integral quinary diagonal quadratic forms, Ramanujan J. 1 (1997), 333-337.
- B.M. Kim, M-H. Kim, B-K. Oh, $2$-universal positive definite integral quinary quadratic forms, Preprint.
- Myung-Hwan Kim and Byeong-Kweon Oh, Representations of positive definite senary integral quadratic forms by a sum of squares, J. Number Theory 63 (1997), no. 1, 89–100. MR 1438651, DOI 10.1006/jnth.1997.2069
- Myung-Hwan Kim and Byeong-Kweon Oh, A lower bound for the number of squares whose sum represents integral quadratic forms, J. Korean Math. Soc. 33 (1996), no. 3, 651–655. MR 1419759
- C. Ko, On the representation of a sum of squares of linear forms, Quart. J. Math. Oxford 8 (1937), 81-98.
- —, On the decomposition of quadratic forms in six variables, Acta Arith. 3 (1939), 64-78.
- J.L. Lagrange, Oeuvres 3 (1869), 189-201.
- O. T. O’Meara, The integral representations of quadratic forms over local fields, Amer. J. Math. 80 (1958), 843–878. MR 98064, DOI 10.2307/2372837
- —, Introduction to quadratic forms, Springer-Verlag, 1973.
- L.J. Mordell, A new Waring’s problem with squares of linear forms, Quart. J. Math. Oxford 1 (1930), 276-288.
- S. Ramanujan, On the expression of a number in the form $ax^{2}+by^{2}+cz^{2}+dw^{2}$, Proc Cambridge Phil. Soc. 19 (1917), 11-21.
- W. Plesken, Additively indecomposable positive integral quadratic forms, J. Number Theory 47 (1994), no. 3, 273–283. MR 1278399, DOI 10.1006/jnth.1994.1037
- G. L. Watson, The class-number of a positive quadratic form, Proc. London Math. Soc. (3) 13 (1963), 549–576. MR 150104, DOI 10.1112/plms/s3-13.1.549
- G. L. Watson, One-class genera of positive quadratic forms in at least five variables, Acta Arith. 26 (1974/75), no. 3, 309–327. MR 379369, DOI 10.4064/aa-26-3-309-327
- G. L. Watson, One-class genera of positive quadratic forms in nine and ten variables, Mathematika 25 (1978), no. 1, 57–67. MR 491499, DOI 10.1112/S0025579300009268
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
Bibliographic Information
- Byeong-Kweon Oh
- Email: oandhan@math.snu.ac.kr
- Received by editor(s): April 27, 1998
- Published electronically: July 6, 1999
- Additional Notes: The author was partially supported by GARC and BSRI-98-1414
- Communicated by: David E. Rohrlich
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 683-689
- MSC (1991): Primary 11E12, 11H06
- DOI: https://doi.org/10.1090/S0002-9939-99-05254-5
- MathSciNet review: 1654105