A LOCAL VERSION OF WONG-ROSAY’S THEOREM FOR PROPER HOLOMORPHIC MAPPINGS

NABIL OURIMI

(Communicated by Steven R. Bell)

Abstract. In the present paper, we generalize Wong-Rosay’s theorem for proper holomorphic mappings with bounded multiplicity. As an application, we prove the non-existence of a proper holomorphic mapping from a bounded, homogeneous domain in \mathbb{C}^n onto a domain in \mathbb{C}^n whose boundary contains strongly pseudoconvex points.

1. Introduction and results

The purpose of this paper is to prove a version of Wong-Rosay’s theorem [15],[10] for families of proper holomorphic mappings with bounded multiplicity. Our main result can be stated as follows:

Theorem 1. Let $D \subset \subset \mathbb{C}^n$ and $G \subset \mathbb{C}^n$ be domains. Suppose there exist a point $p \in D$ and a sequence $\{f_k\}_k$ of proper holomorphic mappings $f_k : D \to G$ of multiplicity equal to m such that $\{f_k(p)\}_k$ converges to a strongly pseudoconvex boundary point $q \in \partial G$. Then there exists a proper holomorphic mapping defined from D onto the unit ball in \mathbb{C}^n of multiplicity less than or equal to m.

This theorem implies that domain D is necessarily pseudoconvex and furthermore, if G is a strongly pseudoconvex, bounded, simply connected domain with C^∞-boundary, then according to [2] G is biholomorphic to the unit ball in \mathbb{C}^n.

The assumption about a uniform bound on the multiplicities on the mappings is necessary for our proof, but it is rather natural in view of a result of Bedford [1] which states that there is an absolute bound on the multiplicity of a proper holomorphic mapping between bounded pseudoconvex domains in \mathbb{C}^n with real analytic boundaries.

By using Theorem 1, we give a generalization of a result of Lin and Wong [7] for unbounded domains in \mathbb{C}^n.

Corollary 1. Let $D \subset \subset \mathbb{C}^n$ and $G \subset \mathbb{C}^n$ be domains. Suppose there exist a point $p \in D$ and a sequence $\{f_k\}_k$ of unbranching proper holomorphic mappings $f_k : D \to G$ such that $\{f_k(p)\}_k$ converges to a strongly pseudoconvex boundary point $q \in \partial G$. Then both D and G are biholomorphic to the unit ball in \mathbb{C}^n.

Received by the editors April 29, 1998.

1991 Mathematics Subject Classification. Primary 32H35.

Key words and phrases. Proper holomorphic mappings, correspondences, scaling methods.
The following example proves that Corollary 1 cannot be extended to sequences of branched proper holomorphic mappings.

Let \(D = \{(z, w) \in \mathbb{C}^2 : |z|^4 + |w|^2 < 1\} \), \(B = \{(z, w) \in \mathbb{C}^2 : |z|^2 + |w|^2 < 1\} \) be domains in \(\mathbb{C}^2 \) and let us consider the proper holomorphic mapping \(f : D \to B \),

\[
(z, w) \mapsto (z^2, w).
\]

Let \(q \in \partial B \) be a boundary point and \((q_k) \) be a sequence in \(B \), which converges to \(q \). Since \(B \) is homogeneous, there exists a sequence \((\varphi_k)_k \subset B \) of automorphisms such that \(q_k = \varphi_k(0) \). Let \(f_k = \varphi_k \circ f \). Then \(\{f_k\}_k \) is a sequence of proper holomorphic mappings with bounded multiplicity and \(\{f_k(0)\}_k \) converges to \(q \) which is a strongly pseudoconvex boundary point, but the domain \(D \) is not biholomorphic to the unit ball in \(\mathbb{C}^2 \).

For strongly pseudoconvex domains in \(\mathbb{C}^n \), we have the following result.

Corollary 2. Let \(D \subset \subset \mathbb{C}^n \) and \(G \subset \mathbb{C}^n \) be strongly pseudoconvex domains. Suppose there exist a point \(p \in D \) and a sequence \(\{f_k\}_k \) of proper holomorphic mappings \(f_k : D \to G \) such that \(\{f_k(p)\}_k \) converges to a strongly pseudoconvex boundary point \(q \in \partial G \). Then both \(D \) and \(G \) are biholomorphic to the unit ball in \(\mathbb{C}^n \).

In the case where \(D = G \), we obtain a local version of Wong-Rosay’s theorem for proper holomorphic mappings as follows:

Theorem 2. Let \(D \) be a bounded domain in \(\mathbb{C}^n \). Suppose there exist a point \(p \in D \) and a sequence \(\{f_k\}_k \) of proper holomorphic mappings \(f_k : D \to D \) of bounded multiplicity such that \(\{f_k(p)\}_k \) converges to a strongly pseudoconvex boundary point \(q \in \partial D \). Then \(D \) is biholomorphic to the unit ball in \(\mathbb{C}^n \).

As another application of Theorem 1, we establish the following result concerning bounded homogenous domains in \(\mathbb{C}^n \).

Corollary 3. Let \(D \) be a bounded homogenous domains in \(\mathbb{C}^n \) and \(G \) be a domain in \(\mathbb{C}^n \) whose boundary contains strongly pseudoconvex points. If there exists a proper holomorphic mapping from \(D \) onto \(G \), then \(D \) is biholomorphic to the unit ball in \(\mathbb{C}^n \).

2. **Notations and preliminary results**

For the proof of Theorem 1, we need to introduce the notion of proper holomorphic correspondences. Let \(D \) and \(G \) be two domains in \(\mathbb{C}^n \) and let \(\Gamma \) be a complex purely \(n \)-dimensional subvariety contained in \(D \times G \). We denote by \(\pi_1 : \Gamma \to D \) and \(\pi_2 : \Gamma \to G \) the natural projections. When \(\pi_1 \) is proper, then \((\pi_2 \circ \pi_1^{-1})(z) \) is a non-empty finite subset of \(G \) for any \(z \in D \) and one may therefore consider the set-valued mapping \(f = \pi_2 \circ \pi_1^{-1} \). Such a map is called a holomorphic correspondence between \(D \) and \(G \); \(\Gamma \) is said to be the graph of \(f \) and it will be denoted by \(\text{graph} f \). Since \(\pi_1 \) is proper, there exist a complex subvariety \(V \subset \text{graph} f \) and an integer \(m \) such that \(f(z) = \{f^1(z), \ldots, f^m(z)\} \) for all \(z \in D \setminus \pi_1(V) \) and the \(f^j \)'s are distinct holomorphic functions in a neighborhood of \(z \in D \setminus \pi_1(V) \) (see for instance [5]). The integer \(m \) is called the multiplicity of \(f \). The correspondence \(f \) is proper if \(\pi_2 \) is proper and it is irreducible if its graph is irreducible. Furthermore, for bounded domains \(f \) is proper if and only if \(\partial \text{graph} f \subset \partial D \times \partial G \). Correspondences were introduced by Stein [12] in order to generalize meromorphic mappings.
between complex spaces. Properties of correspondences can be found in Stein’s papers [12, 13]. For example, it can be shown that \(f \) gives rise to a holomorphic mapping \(\tilde{f} : D \to G'_{\text{sym}} \) into the \(m \)-fold symmetric product of \(G \) ([3]).

Now let \(z_0 \) be a point in \(D \) and \(\{ z_1, z_2, \ldots, z_m \} \) be a set in \(G \). We say that \(f(z) = \{ f^1(z), \ldots, f^m(z) \} \) converges to \(\{ z_1, z_2, \ldots, z_m \} \) when \(z \) tends to \(z_0 \) if after a possible renumberation of \(f^j \), one has \(\lim_{z \to z_0} f^j(z) = z^j \). Equivalently \(f(z) \) tends to \(\{ z_1, z_2, \ldots, z_m \} \) in the sense of Hausdorff convergence of sets.

We denote by \(\text{Cor}(D, G, m) \) the set of all \(\nu \)-valued holomorphic mappings from \(D \) onto \(G \) for \(\nu = 1, \ldots, m \). Let \(f \in \text{Cor}(D, G, m) \) be irreducible, \(a \in A \subseteq D \), \(b \in f(a) \); then we define \(\tilde{f}_{\alpha}^{(a,b)} \in \text{Cor}(\hat{A}, G, m) \) to be the correspondence obtained by analytic continuation of the germ of \(f \) at \((a, b) \) by paths which lie in \(A \). Equivalently, \(\text{graph} \tilde{f}_{\alpha}^{(a,b)} \) is the union of those irreducible components of \(\text{graph} f \cap \{ A \times G \} \), which contain \((a, b) \).

Let \(\{ f_k \} \subseteq \text{Cor}(D, G, m) \). We say that \(\{ f_k \} \) is compactly divergent if \(\forall K_1 \subseteq D, K_2 \subseteq G, \exists j_0 \forall j \geq j_0 : \)

\[
f_k(K_1) \cap K_2 = \emptyset.
\]

If the \(f_k \) are irreducible, we say that \(f_k \) converge to \(f \in \text{Cor}(D, G, m) \) if \(\exists (a, b_k) \in \text{graph} f_k \) with \(b_k \to b \in G \) and for all \(K \subseteq D \) with \(a \in K \):

\[
\tilde{f}_{k, K}^{(a, b_k)} \to f_K \text{ for some } f_K \in \text{Cor}(\hat{K}, G, m)
\]

and

\[
\bigcup_{K \subseteq D} \text{graph} f_K = \text{graph} f.
\]

If \(D \) and \(G \) are bounded domains in \(\mathbb{C}^n \), the set of proper holomorphic correspondence \(\text{Cor}(D, G, m) \) is normal for any \(m \in \mathbb{N} \) ([6]), i.e. every sequence \(\{ f_k \} \) of proper holomorphic correspondence in \(\text{Cor}(D, G, m) \) is either compactly divergent or has a convergent subsequence.

3. Proofs of results

Proof of Theorem 1. Since \(q \) is strongly pseudoconvex boundary point, according to [4] the sequence \(\{ f_k \} \) converges to \(q \) uniformly on compact subsets of \(D \). We use scaling methods introduced by S.Pinchuk [8]. Let \(U \) be a neighborhood of \(q \) in \(\mathbb{C}^n \) which does not intersect the set of weakly pseudoconvex points of \(\partial G \). For all \(\xi \in \partial G \cap U \), we consider the change of variables \(\alpha^\xi \) defined by:

\[
\begin{align*}
z_j^* &= \frac{\partial \rho}{\partial z_n}(\xi)(z_j - \xi_j) - \frac{\partial \rho}{\partial \bar{z}_j}(\xi)(z_n - \xi_n), \quad 1 \leq j \leq n - 1, \\
z_n^* &= \sum_{1 \leq j \leq n} \frac{\partial \rho}{\partial \bar{z}_j}(\xi)(z_j - \xi_j)
\end{align*}
\]

where \(\rho \) is a defining function of \(G \). The mapping \(\alpha^\xi \) maps \(\xi \) to \(0 \) and the real normal at \(0 \) to \(\partial G \) to the line \(\{ z = 0, y_n = 0 \} \).

Let \(K \subseteq D \) be a compact. There exists an integer \(k_0 \) such that, for all \(k \geq k_0 \) and \(z \in K \), the point \(f_k(z) \in U \cap G \). We denote by \(w^k \) the projection of \(q^k \) on \(\partial G \cap U \) and \(\alpha^k = \alpha^{w^k} \) the mapping as above. We have \(\alpha^k(q^k) = 0, -\delta_k \) with \(q^k = f_k(p) \) and \(\delta_k = \text{dist}(\alpha^k(q^k), \partial \alpha^k(G^k)) \). We define now the inhomogenous dilatations \(\varphi^k \) by \(\varphi^k(z, z_n) = (\delta_k^2 z, \delta_k z_n) \) and let \(G^k = \varphi^k \circ \alpha^k(G) \). For all \(k \),
the mapping \(g_k = \varphi^k \circ \alpha^k \circ f_k : D \to G^k \) is a proper holomorphic mapping with multiplicity \(m \), which satisfies \(g_k(p) = s = (0, -1) \). The sequence \(\{g_k\}_k \) is a normal family, passing to subsequence, \(\{g_k\}_k \) converges uniformly on the compact subsets of \(D \) to a holomorphic mapping \(g : D \to \Sigma \), where

\[
\Sigma = \{ (z, z_n) \in \mathbb{C}^n : 2 \text{Re}(z_n) + |z|^2 < 0 \}.
\]

To finish the proof we shall prove that the mapping \(g \) is proper. We will need to study the convergence of the correspondence \(h_k = g_k^{-1} \). For this, we will use a similar method introduced by W. Klingenberg and S. Pinchuk in [6] to study the problem of normality of proper holomorphic correspondences between bounded domains in \(\mathbb{C}^n \).

The correspondence \(h_k : G^k \to D \) is a proper, holomorphic irreducible one which satisfies \((s, p) \in \text{graph}(h_k) \) for all \(k \). Given \(K \subset \Sigma \), a compact, \(s \in K \), we have \(\hat{h}_{k, K}^{(s, p)} \in \text{Cor}(\hat{K}, D, m) \). Since \(D \) is bounded, there is a subsequence which converges to an element \(h \in \text{Cor}(K, \mathcal{D}, m) \). Since \(\Sigma \) is biholomorphic to the unit ball \(\mathbb{B} \), then by exhausting \(\mathbb{B} \) with compact and passing to diagonal subsequence, we obtain \(h \in \text{Cor}(\Sigma, \mathcal{D}, m) \). The following fact was proved in [6]. For completeness, we include a proof.

Claim. \(h \in \text{Cor}(\Sigma, D, m) \).

Proof. The branches \(\{h^1, \ldots, h^m\} \) of \(h \) are locally defined and holomorphic on \(D \setminus \pi_1(V) \). Now the jacobians of \(h^i \) induce in a natural manner a holomorphic function \(\text{Jac}(h) \) on \(\text{graph}(h) \setminus V \); then there exists only one \(i \in \{1, \ldots, m\} \) such that \(z \in \text{graph}(h^i) \). We define \(\text{Jac}(h)(z) = \text{Jac}(h^i)(\pi_1 z) \).

First we show that \(\text{Jac}(h) \neq 0 \). We need the following lemma.

We will write \(\hat{h}_A^{(a, b)} = h_A^{(a, b)}(A) \).

Lemma 1 ([6]). Let \(D \) and \(G \) be bounded domains in \(\mathbb{C}^n \) and \((a, b) \in D \times G \). Then for all \(U(b) \subset G \) there exists \(U(a) \subset D \), such that for all \(h \in \text{Cor}(D, G, m) \) with \(b \in h(a) \) we have: \(\hat{h}_U^{(a, b)}(A) \subset U(b) \).

Let \(U(p) \subset \subset D \) be a neighborhood of \(p \in D \). By Lemma 1, there exists \(U(s) \) a neighborhood of \(s \in \Sigma \) with \(\hat{h}_{k, U(s)}^{(s, p)} \subset U(p) \) for all \(k \). Then we have \(z = g_k = g \circ \hat{h}_{k, U(s)}^{(s, p)}(z) \) for all \(z \in U(s) \). Passing to a convergent subsequence, we have \(z = g_k \circ \hat{h}_{U(s)}^{(s, p)}(z) \) for all \(z \in U(s) \), which implies that \(\text{Jac}(h_U(s)) \neq 0 \). Since \(\text{graph}(h) \setminus V \) is connected, we conclude that \(\text{Jac}(h) \neq 0 \). Let \(W \subset \text{graph}(h) \setminus V \) denote the variety \(\{ \text{Jac}(h) = 0 \} \). Now assume that the claim is false, i.e. there exist \((x, y) \in \Sigma \times \partial D \) with \(y \in h(x) \). Since the branches of \(h \) are locally open maps on \(D \setminus \pi_1(V \cup W) \), we must have \(x \in \pi_1(V \cup W) \). The variety \(V \cup W \) is a subvariety of \(D \) of dimension \(n - 1 \); thus there exists a holomorphic disc \(\hat{\Delta} \) in \(D \) such that \(\hat{\Delta} \cap \pi_1(V \cup W) = x \). Since \(h(\hat{\Delta}) \subset G \cup \{ y \} \) is a disc, by the theorem of Cartan-Thullen (see [14]), the maps \(g_k \) and \(g \) extend analytically to a fixed neighborhood of \(y \), say \(U(y) \). The domain \(\Sigma \) is biholomorphic to the unit ball which is a bounded domain; then there exists a subsequence of \(g_k \) which converges to \(g \) on the compact subsets of \(D \cup U(y) \). It follows from the assumption that there exists \(y_k \in \hat{h}_{k, K}(x) \) with \(y_k \to y \). But since \(h_k \) is the inverse of \(g_k \), this implies \(x = g_k(y_k) \), and we may pass to the limit, which gives \(x = g(y) \). Since \(g_k \) is proper, \(g_k(y) \in \partial G_k \) and then by passing
to a convergent subsequence, the limit implies that $g(y) \in \partial \Sigma$. This contradicts $x \in \Sigma$.

We continue now with the proof of Theorem 1. Let $z \in D$ and $U(g(z))$ be a neighborhood of $g(z)$ in Σ. Lemma 1 implies that there exists $U(z)$ a neighborhood of z in D such that for large k's we have $g_k(U(z)) \subset U(g(z))$. One has $z \in h_k \circ U(g(z)) \circ g_k(z)$ for all $z \in U(z)$. Passing to a convergent subsequence and to limit, we get

$$z \in h \circ g(z), \forall z \in D.$$

Suppose that there exists a sequence $\{z_j\} \subset D$, which converges to $z \in \partial D$ and $g(z_j)$ converges to $z' \in \Sigma$. According to (*), we have $z_j \in h \circ g(z_j)$ for all j. The limit implies that $z \in h(z')$, which contradicts $z \in \partial D$ and then g is proper. This finishes the proof of Theorem 1.

Proof of Corollary 1. First we show that D is simply connected. According to [4], the sequence $\{f_k(p)\}_k$ converges uniformly on compact subsets of D to q. Suppose that D is not simply connected; then there exists a nontrivial closed loop γ in $\pi_1(D)$. The boundary of G is smooth near q; then there exists a neighborhood U of q such that $G \cap U$ is simply connected. For large k's, $f_k(\gamma)$ is a closed loop $\beta \subset G \cap U$. Nevertheless, $f_k : D \to G$ is a covering, and $(f_k)_* : \pi_1(D) \to \pi_1(G)$ is one to one. This is a contradiction to the fact that $f_k(\gamma)$ must be a nontrivial element in $(f_k)_*\pi_1(D)) \subset \pi_1(G)$.

The mappings f_k are a covering and D is simply connected. Then the order of $\pi_1(G)$ is equal to the multiplicity of f_k for all k and then the multiplicity of f_k is bounded. According to Theorem 1, there exists a proper holomorphic mapping $f : D \to \mathbb{B}$. Hurwitz's theorem implies that f is a covering. Since \mathbb{B} is simply connected, f is biholomorphic and then D is biholomorphic to the unit ball.

For any k, the map $h = f_k \circ \mathbb{B} \to G$ is a holomorphic covering. The ball \mathbb{B} is simply connected, and h is factored by automorphisms, i.e., there exists a subgroup Γ of automorphism groups of \mathbb{B} such that for all $z \in \mathbb{B}$, $h^{-1}(h(z)) = \{\gamma(z), \gamma \in \Gamma\}$. According to [11], $\{\gamma(z) = z\}$ is non-empty. Since $\{\gamma(z) = z\} \subset V_h$ (V_h is the branch locus of h) for all $\gamma \in \Gamma \setminus \{I_\mathbb{B}\}$ and h is a covering, the group Γ is reduced to $\{I_\mathbb{B}\}$ and then h is biholomorphic.

Proof of Corollary 2. The domains D and G are strongly pseudoconvex, according to [8], and f_k is a covering. The proof can be completed by using Corollary 1.

Proof of Theorem 2. Theorem 1 implies that there exists a proper holomorphic mapping $f : D \to \mathbb{B}$. The correspondence $f \circ f_k \circ f^{-1}$ is an irreducible self-proper one, according to [2]; $f \circ f_k \circ f^{-1}$ is an automorphism of the unit ball. There exists then $\phi \in Aut(\mathbb{B})$ such that $f \circ f_k = \phi \circ f$. From this, we conclude that the mapping f_k is one to one. Otherwise the multiplicity of the mapping $f \circ f_k$ is greater than the multiplicity of the mapping $\phi \circ f$, but $f \circ f_k = \phi \circ f$. Then f_k is biholomorphic for all k. Now Corollary 1 can be applied to finish the proof.

Proof of Corollary 3. Let q be a strongly pseudoconvex boundary point of G and $\{f(p_k)\}_k$ be a sequence in G which converges to q, where $(p_k)_k$ is a sequence in D. Since D is homogenous, there exists a sequence of automorphisms $\{g_k\}_k \subset Aut(D)$ such that $g_k(0) = p_k$. The sequence $\{f \circ g_k(0)\}$ converges to q. Theorem 1 implies that there exists a proper holomorphic mapping from D onto the unit ball in \mathbb{C}^n. According to [9], D is biholomorphic to the unit ball.
ACKNOWLEDGEMENTS

This paper is part of my thesis presented to “Université de Provence” in November 1997. I thank my advisor Professor Bernard Coupet for his constant encouragement and valuable advice.

REFERENCES

[4] F. Berteloot, Un principe de localisation pour les domaines faiblement pseudoconvexes de \mathbb{C}^n dont le groupe d'automorphismes n'est pas compact, Colloque d'analyse complexe et géométrie, Marseille, Janvier (1992), Astérisque No 217, 13-27. MR 94k:32019

C.M.I., 39 RUE JOLIOT-CURIE, 13453 MARSEILLE CEDEX 13, FRANCE
E-mail address: ourimi@gyptis.univ-mrs.fr
Current address: Faculte des Sciences de Monastir, Route de Kairouan, 5000 Monastir, Tunisia