ON p-HYPONORMAL OPERATORS

EUNGIL KO

(Communicated by David R. Larson)

Abstract. In this paper we show that p-hyponormal operators with $0 \notin \sigma(|T|^2)$ are subscalar. As a corollary, we get that such operators with rich spectra have non-trivial invariant subspaces.

1. Introduction

Let H and K be separable complex Hilbert spaces and let $\mathcal{L}(H,K)$ denote the space of all bounded linear operators from H to K. If $H = K$, we write $\mathcal{L}(H)$ in place of $\mathcal{L}(H,K)$.

An operator $T \in \mathcal{L}(H)$ is said to be p-hyponormal, $0 < p \leq 1$, if $(T^*T)^p \geq (TT^*)^p$ where T^* is the adjoint of T. If $p = 1$, T is called hyponormal and if $p = 1/2$, T is called semi-hyponormal. Semi-hyponormal operators were introduced by Xia (see [Xi]), and p-hyponormal operators for a general p, $0 < p < 1$, have been studied by Aluthge. Any p-hyponormal operators are q-hyponormal if $q \leq p$. But there are examples to show that the converse of the above statement is not true (see [Al]).

A bounded linear operator S on H is called scalar of order m if it has a spectral distribution of order m, i.e., if there is a continuous unital morphism of topological algebras

$$\Phi : C^m_0(\mathbb{C}) \rightarrow \mathcal{L}(H)$$

such that $\Phi(z) = S$, where as usual z stands for the identity function on \mathbb{C} and $C^m_0(\mathbb{C})$ stands for the space of compactly supported functions on \mathbb{C}, continuously differentiable of order m, $0 \leq m \leq \infty$. An operator is subscalar if it is similar to the restriction of a scalar operator to a closed invariant subspace. We now define the weaker form of a subscalar operator. An operator $T \in \mathcal{L}(H)$ is quasi-subscalar if there exists a one-to-one $V \in \mathcal{L}(H,K)$ such that $VT = SV$ where $S (= \Phi(z)$ in the above definition) is a scalar operator.

This paper has been divided into three sections. Section 2 deals with some preliminary facts. In section 3, we show that p-hyponormal operators with the property $0 \notin \sigma(|T|^2)$ are subscalar. As a corollary, we get that such operators with rich spectra have non-trivial invariant subspaces.

Received by the editors April 22, 1998.

2000 Mathematics Subject Classification. Primary 47B20, 47A15.

Key words and phrases. p-hyponormal, subscalar operators, invariant subspaces.

The author is supported by the MOST through National R & D Program (97-N6-01-01-A-5) for Women’s Universities.

©1999 American Mathematical Society
2. Preliminaries

Let $du(z)$, or simply $d\mu$, denote the planar Lebesgue measure. Let H be a complex separable Hilbert space, and let D be a bounded open disc in C. We shall denote by $L^2(D, H)$ the Hilbert space of measurable functions $f : D \to H$, such that

$$\|f\|_{2,D} = \left(\int_D \|f(z)\|^2 d\mu(z)\right)^{1/2} < \infty.$$

The space of functions $f \in L^2(D, H)$ which are analytic functions in D (i.e., $\partial f = 0$) is defined by

$$A^2(D, H) = L^2(D, H) \cap \mathcal{O}(D, H)$$

where $\mathcal{O}(D, H)$ denotes the Fréchet space of H-valued analytic functions on D with respect to uniform topology. $A^2(D, H)$ is called the Bergman space for D. Note that $A^2(D, H)$ is a Hilbert space. The operator $T - z$ on the space $\mathcal{O}(D, H)$ has property (β), which means by definition that $T - z$ is one-to-one and has closed range for every disc D.

Let us define now a Sobolev type space, called $W^2(D, H)$ where D is a bounded disc in C. $W^2(D, H)$ will be the space of those functions $f \in L^2(D, H)$ whose derivatives $\partial f, \partial^2 f$ in the sense of distributions still belong to $L^2(D, H)$. Endowed with the norm $\|f\|_{W^2}^2 = \sum_{i=0}^2 \|\partial^i f\|_{2,D}^2$, $W^2(D, H)$ becomes a Hilbert space contained continuously in $L^2(D, H)$.

Now for $f \in C^2_0(C)$, let M_f denote the operator on $W^2(D, H)$ given by multiplication by f. This has a spectral distribution of order 2, defined by the functional calculus

$$\Phi_M : C^2_0(C) \to \mathcal{L}(W^2(D, H)), \quad \Phi_M(f) = M_f.$$

Therefore M_z is a scalar operator of order 2. In fact, it can be shown [Pu] that M_z is subnormal.

3. Subscalarity

This section deals with the characterization for some p-hyponormal operators. Recall that an operator $T \in \mathcal{L}(H)$ is said to be p-hyponormal, $0 < p \leq 1$, if $(T^*T)^p \geq (TT^*)^p$ where T^* is the adjoint of T.

We need the following lemmas to give a proof of the main theorem.

Lemma 1 ([Xi], Lemma 2.1). Let $T = U|T|_r$ be the polar decomposition of T, $Q = |T|_r - |T|_l$, $z = pe^{i\theta}$, $0 < \rho$, and $|e^{i\theta}| = 1$ where $|T|_r = (T^*T)^{\frac{1}{2}}$ and $|T|_l = (TT^*)^{\frac{1}{2}}$. Then

$$\|(T - z)f\|_{2,D}^2 = \|(T|_r - \rho)f\|_{2,D}^2 + \rho\|T|^\frac{1}{2}(U - e^{i\theta})^*f\|_{2,D} + \rho(Qf, f)$$

for all $f \in L^2(D, H)$.

For reference, we quote Lemma 2 from [Pu].

Lemma 2 ([Pu], Proposition 2.1). For every bounded disk D in C there is a constant C_D, such that for an arbitrary operator $T \in \mathcal{L}(H)$ and $f \in W^2(D, H)$ we have

$$\|(I - P)f\|_{2,D} \leq C_D(\|(T - z)^*\partial f\|_{2,D} + \|(T - z)^*\partial^2 f\|_{2,D})$$

where P denotes the orthogonal projection of $L^2(D, H)$ onto the Bergman space $A^2(D, H)$.
For p-hyponormal operator $T = U|T|$, Aluthge ([Al]) introduced the operator $\tilde{T} = |T|^\frac{1}{2} U |T|^\frac{1}{2}$ and showed very interesting results on \tilde{T}.

Lemma 3 ([Al]). Let $T = U|T|_r$ be a p-hyponormal operator, $0 < p < 1$, and U unitary. Then the operator $\tilde{T} = |T|^\frac{1}{2} U |T|^\frac{1}{2}$ is hyponormal if $\frac{1}{2} \leq p < 1$, and $(p + \frac{1}{2})$-hyponormal if $0 < p < \frac{1}{2}$.

Lemma 4. Let $T = U|T|_r$ be semi-hyponormal and let U be unitary. Let D be a bounded disk which contains $\sigma(T)$. Then the map $V : H \to H(D)$ defined by $Vh = 1 \otimes h \mp (\tilde{T} - z) W^2(D, H)$ is one-to-one and has closed range, where $1 \otimes h$ denotes the constant function sending any $z \in D$ to h.

Proof. Let $h_n \in H$ and $f_n \in W^2(D, H)$ be sequences such that

$$
\lim_{n \to \infty} \|(T - z)f_n + 1 \otimes h_n\|_{W^2} = 0.
$$

Then by the definition of the norm of Sobolev space (1) implies

$$
\lim_{n \to \infty} \|(T - z)\bar{\partial}^i f_n\|_{2,D} = 0
$$

for $i = 1, 2$. Since T is a semi-hyponormal operator, Lemma 1 and equation (2) imply

$$
\begin{cases}
\lim_{n \to \infty} \||(T - \rho)\bar{\partial}^i f_n\|_{2,D} = 0, \\
\lim_{n \to \infty} \rho\|\|T\|^\frac{1}{2} (U - e^{i\theta})^* \bar{\partial}^i f_n\|_{2,D} = 0, \\
\lim_{n \to \infty} \rho\|Q\bar{\partial}^i f_n, \bar{\partial}^i f_n\| = 0.
\end{cases}
$$

We note that for $i = 1, 2$

$$
(T - z)^* \bar{\partial}^i f_n = |T|^\frac{1}{2} \left[|T|^{\frac{1}{2}} (U - e^{i\theta})^* \bar{\partial}^i f_n \right] + e^{-i\theta}(\{(T) - \rho\) \bar{\partial}^i f_n].
$$

By equations (3) and (4), we get

$$
\lim_{n \to \infty} \|(T - z)^* \bar{\partial}^i f_n\|_{2,D} = 0.
$$

Lemma 2 and equation (5) imply

$$
\lim_{n \to \infty} \|(I - P)f_n\|_{2,D} = 0,
$$

where P denotes the orthogonal projection of $L^2(D, H)$ onto $A^2(D, H)$. Then by

$$
\lim_{n \to \infty} \|(T - z)Pf_n + 1 \otimes h_n\|_{2,D} = 0.
$$

Let Γ be a curve in D surrounding $\sigma(T)$. Then for $z \in \Gamma$

$$
\lim_{n \to \infty} \|Pf_n(z) + (T - z)^{-1}(1 \otimes h_n)\| = 0
$$

uniformly. Hence

$$
\lim_{n \to \infty} \|\frac{1}{2\pi i} \int_{\Gamma} Pf_n(z)dz + h_n\| = 0.
$$

But by Cauchy’s theorem,

$$
\int_{\Gamma} Pf_n(z)dz = 0.
$$

Hence $\lim_{n \to \infty} h_n = 0$. Thus V is one-to-one and has closed range.

\square
Proposition 5. Let $T = U|T|_r$ be a p-hyponormal operator with the property $0 \notin \sigma(|T|^\frac{1}{p})$, $0 < p < 1$, and U unitary. Let D be a bounded disk which contains $\sigma(T)$. Then the map $V : H \to H(D)$ defined by $V h = 1 \otimes h (\equiv 1 \otimes h + (T - z)W^2(D, H))$ is one-to-one and has closed range, where $1 \otimes h$ denotes the constant function sending any $z \in D$ to h.

Proof. Let $h_n \in H$ and $f_n \in W^2(D, H)$ be sequences such that

\begin{equation}
\lim_{n \to \infty} \| (T - z)f_n + 1 \otimes h_n \|_{W^2} = 0.
\end{equation}

Then equation (7) implies

\begin{equation}
\lim_{n \to \infty} \| (T - z)\partial^i f_n \|_{2,D} = 0
\end{equation}

for $i = 1, 2$.

(a) If $\frac{1}{2} \leq p < 1$, then T is semi-hyponormal. Therefore, Proposition 5 follows from Lemma 4.

(b) Let $0 < p < \frac{1}{2}$. Since $T = U|T|_r$,

\begin{equation}
\lim_{n \to \infty} \| |T|^\frac{1}{p} (U|T|_r - z)\partial^i f_n \|_{2,D} = 0.
\end{equation}

Since $\tilde{T} = |T|^\frac{1}{p} U|T|_r$, we have

\begin{equation}
\lim_{n \to \infty} \| (\tilde{T} - z)\partial^i (|T|^\frac{1}{p} f_n) \|_{2,D} = 0.
\end{equation}

Now we note that for $i = 1, 2$

\begin{equation}
(\tilde{T} - z)^* \partial^i (|T|^\frac{1}{p} f_n) = [\tilde{T}]^\frac{1}{p} [\tilde{T}]^\frac{1}{p} (W - e^{i\theta})^* \partial^i (|T|^\frac{1}{p} f_n)]
\end{equation}

\begin{equation}
+ e^{-i\theta} [\tilde{T}]^\frac{1}{p} (W - e^{i\theta})^* \partial^i (|T|^\frac{1}{p} f_n)].
\end{equation}

By (10) and (11), we get

\begin{equation}
\lim_{n \to \infty} \| (\tilde{T} - z)^* \partial^i (|T|^\frac{1}{p} f_n) \|_{2,D} = 0.
\end{equation}

Since $|T|^\frac{1}{p} (T - z) = (\tilde{T} - z)|T|^\frac{1}{p}$ and $0 \notin \sigma(|T|^\frac{1}{p})$, it follows from (7) that $\sigma(T) = \sigma(\tilde{T})$ and

\begin{equation}
\lim_{n \to \infty} \| (\tilde{T} - z)|T|^\frac{1}{p} f_n + |T|^\frac{1}{p} (1 \otimes h_n) \|_{2,D} = 0.
\end{equation}

By (13) and (14), we have

\begin{equation}
\lim_{n \to \infty} \| (\tilde{T} - z)P(|T|^\frac{1}{p} f_n) + |T|^\frac{1}{p} (1 \otimes h_n) \|_{2,D} = 0.
\end{equation}
Let Γ be a curve in D surrounding $\sigma(T) =: \sigma(T)$). Then for $z \in \Gamma$
\[
\lim_{n \to \infty} \| P([T]^\frac{1}{2} f_n(z)) + (\tilde{T} - z)^{-1}([T]^\frac{1}{2} (1 \otimes h_n)) \| = 0
\]
uniformly. Hence
\[
\lim_{n \to \infty} \| \frac{1}{2\pi i} \int_{\Gamma} P([T]^\frac{1}{2} f_n(z))dz \| = 0.
\]
But by Cauchy’s theorem,
\[
\frac{1}{2\pi i} \int_{\Gamma} P([T]^\frac{1}{2} f_n(z))dz = 0.
\]
Therefore $\lim_{n \to \infty} [T]^\frac{1}{2} h_n = 0$. Since $0 \notin \sigma([T]^\frac{1}{2})$, $[T]^\frac{1}{2}$ is bounded below. Hence $\lim_{n \to \infty} h_n = 0$. \[
\square
\]

Theorem 6. Let $T = U|T|_r$ be p-hyponormal, $0 < p < 1$, and U unitary. If $0 \notin \sigma([T]^\frac{1}{2})$, then T is subscalar of order 2.

Proof. Consider an arbitrary bounded open disk D in the complex plane \mathbb{C} and the quotient space
\[
H(D) = W^2(D, H)/\langle (T-z)W^2(D, H) \rangle
\]
endowed with the Hilbert space norm. The class of a vector f or an operator on $H(D)$ will be denoted by \mathbf{f}, respectively \mathbf{A}. Let M be the operator of multiplication by z on $W^2(D, H)$. As noted at the end of section 2, M is a scalar of order 2 and has a spectral distribution Φ. Let $S \equiv M$. Since $\langle (T-z)W^2(D, H) \rangle$ is invariant under every operator Mf, $f \in C^2(D)$, we infer that S is a scalar operator of order 2 with spectral distribution Φ.

Consider the natural map $V : H \to H(D)$ defined by $Vh = \tilde{1} \otimes h$, for $h \in H$, where $1 \otimes h$ denotes the constant function identically equal to h. Note that $VT = SV$. In particular ran V is an invariant subspace for S. Since V is one-to-one and has closed range by Proposition 5, T is subscalar of order 2. \[
\square
\]

Corollary 7. Every invertible p-hyponormal operator is subscalar of order 2.

Proof. Assume $T = U|T|_r$ is an invertible p-hyponormal operator where U is unitary. Then $|T|_r$ is invertible. By [Ru, Theorem 12.33], $|T|^\frac{1}{2}$ is invertible. Therefore, $0 \notin \sigma([T]^\frac{1}{2})$. By Theorem 6, T is subscalar of order 2. \[
\square
\]

Corollary 8. Let $T = U|T|_r$ be a p-hyponormal operator with the property $0 \notin \sigma([T]^\frac{1}{2})$, $0 < p < 1$, and U unitary. If $\sigma(T)$ has interior in the plane, then T has a non-trivial invariant subspace.

Proof. The corollary follows from Theorem 6 and $|Es|$. \[
\square
\]

Corollary 9. Let T be as in Corollary 8. Then T has the property (β).

Proof. Since every subscalar operator has the property (β), the corollary follows from Theorem 6. \[
\square
\]

Recall that an X in $\mathcal{L}(H, K)$ is called a quasi-affinity if it has trivial kernel and dense range. An operator A in $\mathcal{L}(H)$ is said to be a quasi-affine transform of an operator T in $\mathcal{L}(K)$ if there is a quasi-affinity X in $\mathcal{L}(H, K)$ such that $XA = TX$ (notation: $A \prec T$).
Corollary 10. Let T be as in Corollary 8. If A is any operator such that $A \prec T$, then $\sigma(T) \subseteq \sigma(A)$.

Proof. This is clear from [Ko, Theorem 3.2] and Corollary 9.

Corollary 11. Under the same hypothesis as Corollary 10, $A \in \mathcal{L}(H)$ is quasi-subscalar.

Proof. Let $X \in \mathcal{L}(H, K)$ be a quasi-affinity such that $XA = TX$. Since V (in the construction of V and S) and X are one-to-one, VX is one-to-one. Therefore VX implements the quasi-subscalar properties. Thus A is quasi-subscalar.

References

Department of Mathematics, Ewha Women’s University, Seoul 120-750, Korea
E-mail address: eiko@mm.ewha.ac.kr

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use