A CHARACTERIZATION OF MöBIUS TRANSFORMATIONS

ROLAND HÖFER

(Communicated by Christopher Croke)

Abstract. Let \(n \geq 2 \) be an integer and let \(D \) be a domain of \(\mathbb{R}^n \). Let \(f : D \to \mathbb{R}^n \) be an injective mapping which takes hyperspheres whose interior is contained in \(D \) to hyperspheres in \(\mathbb{R}^n \). Then \(f \) is the restriction of a Möbius transformation.

1. INTRODUCTION

Let \(n \geq 2 \) be an integer. A theorem of A.D. Alexandrov [1] states that any bijective transformation of \(\mathbb{R}^{n+1} \) which preserves the Lorentz distance \(0 \) between pairs of points in both directions is the product of a Lorentz transformation and a dilatation. The following Theorem 1.3 is due to A.D. Alexandrov [2], J.A. Lester [7], and I. Popovici and D.C. Rădulescu [9] and generalizes Alexandrov’s theorem.

Definition 1.1. Let \(n \in \mathbb{N}, n \geq 2 \). For \(x, y \in \mathbb{R}^n \) let \(x \cdot y \) denote the standard euclidean product between \(x \) and \(y \). The Lorentz product, resp. Lorentz distance, between \(x, y \in \mathbb{R}^{n+1} \) is defined by
\[
x \circ y := x_1y_1 + \ldots + x_ny_n - x_{n+1}y_{n+1},
\]
\[
d(x, y) := (y - x) \circ (y - x).
\]

Definition 1.2 (cf. [6]). Let \(n \in \mathbb{N}, n \geq 2 \).

a) Let \(D \subset \mathbb{R}^n \). A mapping \(f : D \to \mathbb{R}^n \) is the restriction of a Möbius transformation if \(\mathbb{R}\sigma_1(f(x)) = \mathbb{R}(\sigma_1(x)A_1) \) is satisfied for all \(x \in D \), where
\[
\sigma_1(z) := \left(\frac{1}{2} - \frac{z}{2}, \frac{z}{2}, \frac{1 + z \cdot z}{2} \right)
\]
for all \(z \in \mathbb{R}^n \), and where \(A_1 \) is an \((n + 2) \times (n + 2)\)-Lorentz matrix, \(A_1M_1A_1^T = M_1 := \text{diag}(1, \ldots, 1, -1) \).

b) Let \(D \subset \mathbb{R}^{n+1} \). A mapping \(f : D \to \mathbb{R}^{n+1} \) is the restriction of a Lie transformation if \(\mathbb{R}\sigma_2(f(x)) = \mathbb{R}(\sigma_2(x)A_2) \) for all \(x \in D \), where
\[
\sigma_2(z) := \left(\frac{1}{2} - \frac{z \circ z}{2}, z, \frac{1 + z \circ z}{2} \right)
\]
for all \(z \in \mathbb{R}^{n+1} \), and where \(A_2 \) is an \((n + 3) \times (n + 3)\)-matrix with \(A_2M_2A_2^T = M_2 := \text{diag}(1, \ldots, 1, -1, -1) \).

Received by the editors June 4, 1998.
1991 Mathematics Subject Classification. Primary 51B10; Secondary 51M04, 51M09.

Key words and phrases. Möbius transformation, Lie transformation, mappings preserving hyperspheres, Alexandrov’s theorem for domains.

©2000 American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 1.3. Let D be a domain (i.e. an open, connected subset) of \mathbb{R}^{n+1}, $n \geq 2$. Let $f : D \to \mathbb{R}^{n+1}$ be a mapping such that
d(x,y) = 0 \iff d(f(x), f(y)) = 0
for all $x,y \in D$. Then f is the restriction of a Lie transformation.

Alexandrov’s theorem and Theorem 1.3 are important results in a modern field of geometrical research which is called characterizations of geometrical mappings under mild hypotheses [3], [4], [8]. In particular no regularity assumptions such as differentiability or even continuity are needed in these kinds of characterizations. In the same sense, C. Carathéodory proved [5] that any injective mapping of a domain D of \mathbb{R}^2 to \mathbb{R}^2 is the restriction of a Möbius transformation if the following condition is satisfied:
The image of any circle contained with its interior in D, is itself a circle.

2. RESULTS

There is a close connection between Carathéodory’s theorem and Theorem 1.3 ($n = 2$). In fact we will generalize Carathéodory’s theorem to arbitrary dimensions with the help of Theorem 1.3.

Theorem 2.1. Let $n \geq 2$ be an integer and let D be a domain of \mathbb{R}^n. Let $f : D \to \mathbb{R}^n$ be an injective mapping such that $f(H)$ is a hypersphere, whenever $H \subset D$ is a hypersphere and the interior of H is contained in D. Then f is the restriction of a Möbius transformation.

Definition 2.2. A similarity of \mathbb{R}^n, $n \geq 2$, is a mapping $f : \mathbb{R}^n \to \mathbb{R}^n$, $f(x) = kxQ + t$ where $k > 0$, $t \in \mathbb{R}^n$, and Q is an orthogonal $n \times n$-matrix, $QQ^T = E$.

It is well known that a mapping $f : \mathbb{R}^n \to \mathbb{R}^n$ which is induced by a Möbius transformation is a similarity. Hence, Theorem 2.1 implies the following corollary.

Corollary 2.3. Let $n \geq 2$. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be an injective mapping such that images of euclidean hyperspheres are euclidean hyperspheres. Then f is a similarity.

Now let D be the set $I^n := \{ x \in \mathbb{R}^n \mid x \cdot x < 1 \}$ of points in Poincaré’s sphere model of n-dimensional hyperbolic geometry, $n \geq 2$. A hyperbolic hypersphere in I^n is a euclidean hypersphere which is contained in I^n. If $f : I^n \to I^n$ is induced by a Möbius transformation and if f is surjective, then f is a hyperbolic motion.

Corollary 2.4. Let $n \geq 2$. Let $f : I^n \to I^n$ be a bijection of n-dimensional hyperbolic space which maps hyperbolic hyperspheres onto hyperbolic hyperspheres. Then f is a hyperbolic motion.

3. PROOF OF THEOREM 2.1

We show that, whenever H is a hypersphere contained in D such that the interior I of H is also contained in D, then $f|_I$ is the restriction of a Möbius transformation. This implies Theorem 2.1 since
a) Any Möbius transformation is uniquely determined by its restriction to any non-empty open subset of \mathbb{R}^n.

b) For any two points $x,y \in D$, there is a finite sequence $I_1, \ldots, I_k \subset D$ of interiors of hyperspheres with $x \in I_1$, $y \in I_k$, $I_j \cap I_{j+1} \neq \emptyset$ for all $j \in \{1, \ldots, k-1\}$.

Let H be a hypersphere contained in D such that the interior I of H is also contained in D.
1. Let \(I' \) denote the interior of the hypersphere \(H' := f(H) \). Then either \(f(I) \subset I' \) or \(f(I) \subset \mathbb{R}^n \setminus (H' \cup I') \).

Proof. Let \(x, y \in I \). Then there is a hypersphere \(H_1 \subset I \) which contains \(x \) and \(y \). Since \(f \) is injective and \(f(H_1) \) is a hypersphere, either \(f(H_1) \subset I' \) or \(f(H_1) \subset \mathbb{R}^n \setminus (H' \cup I') \). Thus \(f(x), f(y) \) are on the same side of \(f(H_1) \).

2. Let \(\mu : \mathbb{R}^n \setminus I' \to \mathbb{R}^n \) denote the restriction of a Möbius transformation which satisfies \(\mu(H') = H' \) and \(\mu(\mathbb{R}^n \setminus (I' \cup H')) \subset I' \). Let \(g : H \cup I \to \mathbb{R}^n \) be defined by \(g := f|_{H \cup I} \) if \(f(I) \subset I' \), and \(g := \mu \circ f|_{H \cup I} \) if \(f(I) \subset \mathbb{R}^n \setminus (H' \cup I') \). Then \(g(I) \subset I' \), \(g(H) = H' \), and \(g \) is an injective mapping which takes hyperspheres in \(H \cup I \) to hyperspheres in \(H' \cup I' \).

3. Let \(H_1 \subset I \) be a hypersphere with interior \(I_1 \). Then \(g(I_1) \) is contained in the interior \(I_1' \) of \(H_1' := g(H_1) \), and \(g(I \setminus (H_1 \cup I_1)) \) is contained in the exterior of \(H_1' \).

Proof. Let \(z \in I \setminus (H_1 \cup I_1) \). There is a hypersphere \(H_2 \subset H \cup I \) with \(z \in H_2 \), \#(\(H \cap H_2 \)) = 1 and \(H_1 \cap H_2 = \emptyset \). Then \(H_2' := g(H_2) \subset H' \cup I' \), \(g(z) \in H_2' \), \#(\(H' \cap H_2' \)) = 1 and \(H_1' \cap H_2' = \emptyset \). Hence \(g(z) \notin I_1' \), and \(g(I \setminus (H_1 \cup I_1)) \subset I' \setminus (H_1' \cup I_1') \). From the proof of 1, we know that \(g(I_1) \) is either contained in the interior or in the exterior of \(H_1' \). We take a hypersphere \(H_3 \subset I \), \#(\(H_1 \cap H_3 \)) > 1. Then \(H_3 \cap I_1 = \emptyset \) and \#(\(H_1' \cap g(H_3) \)) > 1. Hence \(g(H_3 \cap I_1) \cap I_1' \neq \emptyset \) and \(g(I_1) \subset I_1' \).

Definition 3.1. Two hyperspheres \(H_1, H_2 \subset \mathbb{R}^n \) are in interior (exterior) contact if \#(\(H_1 \cap H_2 \)) = 1 and \(H_1 \) is contained in the interior (exterior) of \(H_2 \) where \((i, j) = (1, 2) \) or \((i, j) = (2, 1) \).

4. Two hyperspheres \(H_1, H_2 \subset I \) are in interior (exterior) contact iff \(g(H_1), g(H_2) \) are in interior (exterior) contact.

Proof. Since \(g \) is injective, \#(\(H_1 \cap H_2 \)) = 1 iff \#(\(g(H_1) \cap g(H_2) \)) = 1. The assertion now follows from 3.

Definition 3.2. For any hypersphere \(H_1 \) let \(\gamma(H_1) \in \mathbb{R}^n \), \(\rho(H_1) > 0 \) denote the euclidean center and radius of \(H_1 \). Let \(\lambda(H_1) := (\gamma(H_1), \rho(H_1)) \in \mathbb{R}^n \times \mathbb{R}_{>0} \).

5. Two distinct hyperspheres \(H_1, H_2 \) of \(\mathbb{R}^n \) are in interior contact iff the Lorentz distance between \(\lambda(H_1) \) and \(\lambda(H_2) \) is zero.

6. The set \(\mathcal{C} := \{\lambda(H_1) \mid H_1 \subset I \text{ is a hypersphere}\} \) is a domain of \(\mathbb{R}^{n+1} \).

Proof. \(\mathcal{C} = \{x \in \mathbb{R}^n \times [0, \rho(H)] \mid d(x, \lambda(H)) < 0\} \) is open and connected.

7. The mapping \(\varphi := \lambda \circ g \circ \lambda^{-1} : \mathcal{C} \to \mathcal{C}' := \{\lambda(g(H_1)) \mid H_1 \subset I \text{ is a hypersphere}\} \) satisfies \(d(x, y) = 0 \) iff \(d(\varphi(x), \varphi(y)) = 0 \) for all \(x, y \in \mathcal{C} \).

Proof. From 5. and 4., for all distinct hyperspheres \(H_1, H_2 \subset I \),

\[
 d(\lambda(H_1), \lambda(H_2)) = 0 \iff H_1 \text{ and } H_2 \text{ are in interior contact}
\]

\[
 \iff g(H_1) \text{ and } g(H_2) \text{ are in interior contact}
\]

\[
 \iff d(\lambda(g(H_1)), \lambda(g(H_2))) = 0.
\]
8. From 7. and Theorem 1.3, \(\varphi \) is the restriction of a Lie transformation, i.e. there is an \((n + 3) \times (n + 3)\)-matrix \(A_2 =: (a_{ij})_{i,j=1,\ldots,n+3} \) as in Definition 1.2 b), such that \(\Re \sigma_2(y) = \Re (\sigma_2(x) A_2) \) for all \(x \in C \), \(y = \varphi(x) \).

Definition 3.3. A light line of \(\mathbb{R}^{n+1} \) is a line \(u + \mathbb{R}v \), \(u, v \in \mathbb{R}^{n+1} \), \(v \neq 0 \), where \(d(v, v) = 0 \).

9. \(f|_I \) is the restriction of a Möbius transformation.

Proof. Let \(x \in I \). Let \(l_1, l_2 \) be two distinct light lines which contain \((x, 0)\). Then \(\{ (x, 0) \} = l_1 \cap l_2 \subset \partial C \). The images \(\varphi(l_1 \cap C) \neq \emptyset \) are contained in uniquely determined light lines \(l'_i \), \(i = 1, 2 \). Since \(\varphi \) is continuous, \(\{ (g(x), 0) \} = l'_1 \cap l'_2 \) is contained in \(\partial C' \). Hence for all \(x \in I \), we have \(\Re \sigma_2((g(x), 0)) = \Re (\sigma_2((x, 0)) A_2) \) which implies

\[
\Re \sigma_1(g(x)) = \Re (\sigma_1(x) A_1),
\]

\[
\sigma_1(x) \cdot (a_{1,n+2}, \ldots, a_{n+1,n+2}, a_{n+3,n+2}) = 0
\]

where \(A_1 \) is the \((n+2) \times (n+2)\)-matrix obtained from \(A_2 \) by deleting the \((n+2)\)th row and \((n+2)\)th column. Equation \((3.2)\) is a quadratic equation in \(x = (x_1, \ldots, x_n) \) which holds for any \(x \in I \), and we obtain \(a_{1,n+2} = \ldots = a_{n+1,n+2} = a_{n+3,n+2} = 0 \). Together with \(A_2M_2A_2^T = M_2 \) we have \(A_1M_1A_1^T = M_1 \), where \(M_1 \) is chosen as in Definition 1.2 a). Equation \((3.1)\) implies that \(g \) is the restriction of a Möbius transformation. Hence also \(f|_I \) is the restriction of a Möbius transformation.

Remark 3.4. It is possible to prove Theorem 2.1 by Carathéodory’s theorem. If \(n = 3 \) and \(f : D \to \mathbb{R}^3 \) is injective and has the sphere preserving property, then we can apply Carathéodory’s theorem to any hypersphere \(H \subset D \) whose interior is contained in \(D \), after removing a point \(p \in H \) and \(f(p) \in f(H) \), to show that \(f \) is a Möbius transformation between \(H \) and its image \(f(H) \). This Möbius transformation is the restriction of the same Möbius transformation for all hyperspheres. Induction proves the result for all \(n \geq 2 \).

I would like to thank the referee for helpful comments, especially Remark 3.4.

References

Mathematisches Seminar, Universität Hamburg, Bundesstr. 55, 20146 Hamburg, Germany

E-mail address: hoefer@math.uni-hamburg.de