Boundedness of integral operators
on generalized Morrey spaces
and its application to Schrödinger operators
Authors:
Kazuhiro Kurata, Seiichi Nishigaki and Satoko Sugano
Journal:
Proc. Amer. Math. Soc. 128 (2000), 1125-1134
MSC (1991):
Primary 35B45, 42B20; Secondary 35J10
DOI:
https://doi.org/10.1090/S0002-9939-99-05208-9
Published electronically:
August 5, 1999
MathSciNet review:
1646196
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, we study boundedness of integral operators on generalized Morrey spaces and its application to estimates in Morrey spaces for the Schrödinger operator with nonnegative
(reverse Hölder class) and small perturbed potentials
.
- [Ad] D. Adams, A note on Riesz potentials, Duke Math. J. 42(1975), 765-778.
- [CF] Filippo Chiarenza and Michele Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7) 7 (1987), no. 3-4, 273–279 (1988). MR 985999
- [GR] J. García-Cuerva, J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, 1985.
- [Gu] Denis Guibourg, Inégalités maximales pour l’opérateur de Schrödinger, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 3, 249–252 (French, with English and French summaries). MR 1205192
- [He] Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR 610244
- [Ku] Shige Toshi Kuroda, Supekutoru-riron. II, 2nd ed., Iwanami Shoten Kiso Sūgaku [Iwanami Lectures on Fundamental Mathematics], vol. 17, Iwanami Shoten, Tokyo, 1983 (Japanese). MR 857805
- [KS]
K.Kurata, S.Sugano, A remark on estimates for uniformly elliptic operators on weighted
spaces and Morrey spaces, preprint.
- [Mi] Takahiro Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, Harmonic analysis (Sendai, 1990) ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, pp. 183–189. MR 1261439
- [Na] Eiichi Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), 95–103. MR 1273325, https://doi.org/10.1002/mana.19941660108
- [Ok] Noboru Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Japan 34 (1982), no. 4, 677–701. MR 669276, https://doi.org/10.2969/jmsj/03440677
- [Ol] Peder A. Olsen, Fractional integration, Morrey spaces and a Schrödinger equation, Comm. Partial Differential Equations 20 (1995), no. 11-12, 2005–2055. MR 1361729, https://doi.org/10.1080/03605309508821161
- [Sh1] Zhong Wei Shen, 𝐿^{𝑝} estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 513–546 (English, with English and French summaries). MR 1343560
- [Sh2] Zhongwei Shen, Estimates in 𝐿^{𝑝} for magnetic Schrödinger operators, Indiana Univ. Math. J. 45 (1996), no. 3, 817–841. MR 1422108, https://doi.org/10.1512/iumj.1996.45.1268
- [Ta] M.Taylor, Microlocal Analysis on Morrey spaces, Preprint.
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 35B45, 42B20, 35J10
Retrieve articles in all journals with MSC (1991): 35B45, 42B20, 35J10
Additional Information
Kazuhiro Kurata
Affiliation:
Department of Mathematics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo 192-0397, Japan
Email:
kurata@comp.metro-u.ac.jp
Seiichi Nishigaki
Affiliation:
Numazu College of Technology, 3600 Ooka Numazu 410-8501, Japan
Email:
nishiga@la.numazu-ct.ac.jp
Satoko Sugano
Affiliation:
Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, toshima-ku, Tokyo 171, Japan
Email:
95243001@gakushuin.ac.jp
DOI:
https://doi.org/10.1090/S0002-9939-99-05208-9
Received by editor(s):
June 1, 1998
Published electronically:
August 5, 1999
Additional Notes:
The first author was partially supported by Grant-in Aid for Scientific Research (C)(No. 09640208), the Ministry of Education, Science, Sports and Culture.
Communicated by:
Christopher D. Sogge
Article copyright:
© Copyright 2000
American Mathematical Society