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LARGE VOLUME GROWTH
AND FINITE TOPOLOGICAL TYPE

D. ORDWAY, B. STEPHENS, AND D. G. YANG

(Communicated by Christopher Croke)

Abstract. It is shown in this paper that a complete noncompact n-dimen-
sional Riemannian manifold with nonnegative Ricci curvature, sectional cur-
vature bounded from below, and large volume growth is of finite topological
type provided that the volume growth rate of the complement of the cone of
rays from a fixed base point is less than 2− 1/n.

1. Introduction

A complete Riemannian manifold with nonnegative sectional curvature is neces-
sarily of finite topological type. This follows from the celebrated Cheeger-Gromoll
soul theorem [4]. However, complete Riemannian manifolds with nonnegative or
positive Ricci curvature and bounded sectional curvature may have infinitely gen-
erated homology group as demonstrated by the examples of J.P. Sha and the third
author in [8]. Thus the topological type of these manifolds may be infinite. This
leads to the interesting problem: Under what additional conditions are the mani-
folds of finite topological type? The first result in this direction is due to Abresch
and Gromoll in [1] where they assumed an additional condition on the diameter
growth of the manifolds. Z.M. Shen and G.F. Wei [7] also have some results in
this direction. Recently, Z.M. Shen has shown an interesting finite topological type
theorem in [6] for manifolds with large volume growth and the complement of the
cone of rays from a fixed base point has linear volume growth.

The aim of this note is to prove the following finite topological type result.

Theorem 1. Let (M, g) be a complete noncompact n-dimensional Riemannian
manifold with nonnegative Ricci curvature and large volume growth. Assume that

V ol(B(p, r)) = αrn + o(r2−1/n)

where p ∈M is any fixed base point and α is a positive constant. If, in addition, the
conjugate radius of M is bounded from below by a positive constant or the sectional
curvature is bounded from below, then M has finite topological type.

After the completion of this paper, we received a preprint from Dr. X. Menguy
[5] where he has shown by examples that, for each n ≥ 4, there are n-dimensional
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manifolds with infinite topological type that admit complete Riemannian metrics
with nonnegative Ricci curvature, bounded sectional curvature, and large volume
growth. Thus the additional growth condition on the lower order term o(r2−1/n)
in Theorem 1 cannot be dropped for M to be of finite topological type. However,
it is not clear whether the growth rate 2− 1/n is the best possible.

Finally, we would like to thank Dr. X. Menguy for sending us his preprint and
thank the referee for his suggestions.

2. Preliminaries

Throughout this paper, M will be a complete noncompact n-dimensional Rie-
mannian manifold with nonnegative Ricci curvature. Fix a base point p ∈M . Let
B(p, r) ⊂M be the closed ball of radius r centered at p and let V ol(B(p, r)) be its
volume.

Lemma 2. The limit

αM = lim
r→∞

r−nV ol(B(p, r)) ≥ 0

exists and it is independent of the base point p ∈ M . Moreover, for each point
q ∈M and all r ≥ 0, we have

V ol(B(q, r)) ≥ αMrn.
Proof. By the Bishop-Gromov volume comparison theorem [2], the function
r−nV ol(B(p, r)) is a nonincreasing nonnegative function. Thus the limit exists.
To show that the limit is independent of the base point p, notice that, by the
triangle inequality, we have

B(p, r) ⊂ B(q, r + d)

for any point q ∈M , where d = d(p, q) is the distance from p to q. It follows that

lim
r→∞

r−nV ol(B(q, r)) = lim
r→∞

(r + d)−nV ol(B(q, r + d))

≥ lim
r→∞

rn(r + d)−nr−nV ol(B(p, r))

= lim
r→∞

r−nV ol(B(p, r)).

Now permuting p with q yields the opposite inequality. Hence

lim
r→∞

r−nV ol(B(q, r)) = lim
r→∞

r−nV ol(B(p, r)).

The inequality now follows from the fact that αM is independent of the center of
the ball and r−nV ol(B(q, r)) is a nonincreasing function.

Definition 3. M is said to have large volume growth if αM > 0.

Let SpM ⊂ TpM be the unit sphere in the tangent space TpM of M at p. For
any subset N ⊂ SpM , let

C(N) = {q ∈M |there is a minimal geodesic γ from p to q such that γ′(0) ∈ N}
be the cone over N and let

B(N, r) = B(p, r) ∩ C(N).

Notice that, by definition, C(N) and C(N c) are disjoint subsets of M for any
N ⊂ SpM . The same is true for B(N, r) and B(N c, r). Let

Σ = {v ∈ SpM | expp(rv) : [0,∞)→M is a ray}.
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It is easy to see that Σ is a closed subset of SpM , thus Σc = SpM\Σ is an open
subset of SpM . With these notations, it is clear that C(Σ) is the cone of rays from
p and C(Σc) is the complement of C(Σ). Moreover, C(Σ) is a closed subset of M
and C(Σc) is open.

Lemma 4. Let M be an n-dimensional Riemannian manifold with nonnegative
Ricci curvature. Then

lim
r→∞

r−nV ol(B(Σ, r)) = αM and V ol(B(Σ, r)) ≥ αMrn.

Proof. Since limr→∞ r
−nV ol(B(p, r)) = αM and V ol(B(p, r)) = V ol(B(Σ, r)) +

V ol(B(Σc, r)), it suffices to show that limr→∞ r
−nV ol(B(Σc, r)) = 0. Given any

ε > 0, choose δ > 0 so small such that the open δ-neighborhood Σδ of Σ in
SpM satisfies V ol(Σδ\Σ) < ε. By the Bishop-Gromov volume comparison theorem,
r−nV ol(B(Σδ\Σ, r)) is a nonincreasing function of r. Thus

r−nV ol(B(Σδ\Σ, r)) ≤ lim
r→0

r−nV ol(B(Σδ\Σ, r))

= n−1V ol(Σδ\Σ) < ε/n

where V ol(Σδ\Σ) is the (n− 1)-dimensional volume in the unit sphere SpM .
The complement Σcδ of Σδ is a compact subset in SpM since Σδ is open and

Σcδ ∩ Σ = ∅. Thus there is a constant r0 > 0 such that B(Σcδ, r) ⊂ B(p, r0) for all
r ≥ 0. Therefore

r−nV ol(B(Σc, r)) = r−nV ol(B(Σcδ, r)) + r−nV ol(B(Σδ\Σ, r))
≤ r−nV ol(B(p, r0)) + ε/n

≤ (rn0 r
−nV ol(SpM) + ε)/n < ε

for r > r0 sufficiently large.
Since ε > 0 is arbitrarily small, we have proved that limr→∞ r

−nV ol(B(Σc, r)) =
0 and therefore limr→∞ r

−nV ol(B(Σ, r)) = αM . The inequality then follows from
this limit and the monotonicity of the function r−nV ol(B(Σ, r)). The proof is now
completed.

Corollary 5. Let M be as in Lemma 4. Then

V ol(B(Σc, r)) = o(rn).

Recall that the excess function epq(x) with respect to two points p, q ∈ M is
defined by

epq(x) = d(x, p) + d(x, q)− d(p, q)
where d(p, q) is the distance from p to q.

The excess function epq was introduced by Abresch and Gromoll in [1] and it is
instrumental in the proof of finite topological type theorems for complete manifolds
with nonnegative Ricci curvature. The key is the following upper bound estimate
for epq.

Lemma 6. Let M be a complete n-dimensional Riemannian manifold with non-
negative Ricci curvature. Then for any x ∈M ,

epq(x) ≤ 8(s−1hn)1/(n−1)

where s = min{d(x, p), d(x, q)}, h = d(x, γ), and γ is a minimal geodesic from p to
q.
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The reader is refered to [1] and [2] for a proof.

Lemma 7. Let M be a complete Riemannian manifold with sectional curvature
K ≥ −1. If x ∈ M is a critical point of the distance function d(y) = d(y, p),
d(x, p) ≥ a, and d(x, q) ≥ a with a = − 1

2 ln(21/4 − 1), then

epq(x) ≥ ln 21/2 > 0.

Proof. The proof is based on the Toponogov comparison theorem [3]. Let γ1

be a minimal geodesic from x to q. Since x is a critical point of the distance
function d(y) = d(y, p), there is a minimal geodesic γ2 from x to p such that
θ = ∠(γ′1(0), γ′2(0)) ≤ π/2. Let s1 = d(x, q), s2 = d(x, p), and t = d(p, q). Since
K ≥ −1 and θ ≤ π/2, Toponogov’s comparison theorem implies that

cosh t ≤ cosh s1 cosh s2 − cos θ sinh s1 sinh s2 ≤ cosh s1 cosh s2.

Thus

et ≤ 2 cosh s1 cosh s2 =
1
2

(es1 + e−s1)(es2 + e−s2)

and

epq(x) = s1 + s2 − t ≥ ln 2 + s1 + s2 − ln{(es1 + e−s1)(es2 + e−s2)}
= ln 2− ln(1 + e−2s1)− ln(1 + e−2s2) ≥ ln 2− 2 ln(1 + e−2a)

= ln 21/2 > 0.

3. An estimate of the inscribed radius in the complement

of the cone of rays

Given r > 0, let

h(r) = max{d(x,C(Σ))|x ∈ ∂B(p, r)}

be the maximum distance from points in ∂B(p, r) to the cone of rays from p. In
the following lemma, we give an estimate of h(r) in terms of the volume growth
rate of B(Σc, r).

Lemma 8. Let M be a complete n-dimensional Riemannian manifold with nonneg-
ative Ricci curvature and large volume growth. Assume that V ol(B(Σc, r)) = o(rk)
for some positive constant k > 0. Then

h(r) = o(r
k−1
n−1 ).

In particular, if V ol(B(Σc, r)) = o(r2−1/n), then

h(r) = o(r1/n).

Proof. Since k = 2− 1/n implies k−1
n−1 = 1/n, the second part of the lemma follows

immediately from the first part.
Suppose that, on the contrary, there is a positive constant C and a divergent

increasing sequence of numbers {rl}∞l=1 such that hl ≡ h(rl) ≥ Cr
k−1
n−1
l .

Let xl ∈ ∂B(p, rl) be a point in ∂B(p, rl) such that d(xl, C(Σ)) = hl for each
l = 1, 2, 3, · · · . Since M is of large volume growth, we have, by Lemma 2,

V ol(B(xl, hl)) ≥ αMhnl > 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LARGE VOLUME GROWTH AND FINITE TOPOLOGICAL TYPE 1195

By the definition of h(r), we have B(xl, hl) ⊂ C(Σc) and hl ≤ rl. Thus B(xl, hl)
⊂ B(Σc, 2rl). It follows from the above inequality and Corollary 5 that hl = o(rl).
The triangle inequality implies that

B(xl, hl) ⊂ B(Σc, rl + hl)\B(Σc, rl − hl).

Applying the Bishop-Gromov volume comparison theorem to the pair B(Σc, rl+hl)
and B(Σc, rl − hl) yields

V ol(B(Σc, rl + hl))
V ol(B(Σc, rl − hl))

≤
[
rl + hl
rl − hl

]n
=
[

1 + hlr
−1
l

1− hlr−1
l

]n
.

Hence

αMh
n
l ≤ V ol(B(xl, hl))
≤ V ol(B(Σc, rl + hl))− V ol(B(Σc, rl − hl))

≤ V ol(B(Σc, rl − hl))
{[

1 + hlr
−1
l

1− hlr−1
l

]n
− 1

}

≤ 2nrk−1
l hl

V ol(B(Σc, rl − hl))
rkl

for l sufficiently large.
Thus for large l, we have

r−kl V ol(B(Σc, rl − hl)) ≥ (2n)−1αMr
1−k
l hn−1

l ≥ (2n)−1αMC
n−1 > 0.

This contradicts the volume growth condition V ol(B(Σc, r)) = o(rk) and the proof
is completed.

4. Proof of finite topological type

We shall first prove the following Theorem 9 which implies Theorem 1.

Theorem 9. Let M be a complete n-dimensional Riemannian manifold with non-
negative Ricci curvature and large volume growth. Assume that its conjugate radius
is bounded from below by a positive constant or its sectional curvature is bounded
from below by a negative constant. If V ol(B(Σc, r)) = o(r2−1/n), then M is of finite
topological type.

Proof. By rescaling the metric by a positive constant, we can always assume that
the sectional curvature satisfies K ≥ −1 in the case that the sectional curvature is
bounded from below by a negative constant.

By the isotopy lemma [2], it suffices to show that the distance function d(x) =
d(x, p) has no critical points outside a large ball centered at p.

Suppose that, on the contrary, there is a sequence of critical points {xl}∞l=1 ⊂M
of the distance function d(x) such that liml→∞ d(xl) = ∞. Notice that {xl}∞l=1 ⊂
C(Σc) since no points in the cone of rays C(Σ) from p is a critical point of d(x).

Let rl = d(xl) and hl = d(xl, C(Σ)), l = 1, 2, 3, · · · . Since V ol(B(Σc, r)) =
o(r2−1/n), it follows from the definition of h(r) and Lemma 8 that hl ≤ h(rl) =
o(r1/n

l ).
Since C(Σ) is the cone of rays from the base point p, there is a ray σl : [0,∞)→

M starting from p such that hl = d(xl, σl).
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Apply the Abresch-Gromoll excess estimate in Lemma 6 to the point xl with
ql = σl(2rl) to obtain

epq(xl) ≤ 8(r−1
l hnl )1/(n−1) = o(1)

since d(ql, xl) ≥ d(p, ql) − d(p, xl) = rl, sl = min{d(xl, p), d(xl, ql)} = rl, and
hl = d(xl, σl) = o(r1/n

l ). Hence liml→∞ epq(xl) = 0.
On the other hand, if the sectional curvature K ≥ −1, then it follows from

Lemma 7 that
epq(xl) ≥ ln 21/2 > 0

for all l sufficiently large; if the conjugate radius is bounded from below by a
positive constant, then the same argument as in [6] shows that epq(xl) is uniformly
bounded from below by a positive constant. In either case, we have a contradiction.
Therefore, there is no critical point of the distance function d(x) = d(x, p) outside
a large ball B(p, r) and M is of finite topological type.

Proof of Theorem 1. Lemma 2 implies that α = αM . Since B(p, r) is the disjoint
union of B(Σ, r) with B(Σc, r), we have V (B(p, r)) = V ol(B(Σ, r))+V ol(B(Σc, r)).
It follows from Lemma 4 that

V ol(B(Σc, r)) = V ol(B(p, r)) − V ol(B(Σ, r))

= αMr
n + o(r2−1/n)− V ol(B(Σ, r)) ≤ o(r2−1/n).

Thus Theorem 1 follows from Theorem 9.
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