PARTITIONS WITH PARTS IN A FINITE SET

MELVYN B. NATHANSON

(Communicated by David E. Rohrlich)

Abstract. Let \(A \) be a nonempty finite set of relatively prime positive integers, and let \(p_A(n) \) denote the number of partitions of \(n \) with parts in \(A \). An elementary arithmetic argument is used to prove the asymptotic formula

\[
p_A(n) = \left(\frac{1}{\prod_{a \in A} a} \right) \frac{n^{k-1}}{(k-1)!} + O\left(n^{k-2}\right).
\]

Let \(A \) be a nonempty set of positive integers. A partition of a positive integer \(n \) with parts in \(A \) is a representation of \(n \) as a sum of not necessarily distinct elements of \(A \). Two partitions are considered the same if they differ only in the order of their summands. The partition function of the set \(A \), denoted \(p_A(n) \), counts the number of partitions of \(n \) with parts in \(A \).

If \(A \) is a finite set of positive integers with no common factor greater than 1, then every sufficiently large integer can be written as a sum of elements of \(A \) (see Nathanson \[3\] and Han, Kirfel, and Nathanson \[2\]), and so \(p_A(n) \geq 1 \) for all \(n \geq n_0 \).

In the special case that \(A \) is the set of the first \(k \) integers, it is known that

\[
p_A(n) \sim \frac{n^{k-1}}{k!(k-1)!}.
\]

Erdős and Lehner \[1\] proved that this asymptotic formula holds uniformly for \(k = o(n^{1/3}) \). If \(A \) is an arbitrary finite set of relatively prime positive integers, then

\[
p_A(n) \sim \left(\frac{1}{\prod_{a \in A} a} \right) \frac{n^{k-1}}{(k-1)!}.
\]

The usual proof of this result (Netto \[4\], Pólya–Szegö \[5\] Problem 27) is based on the partial fraction decomposition of the generating function for \(p_A(n) \). The purpose of this note is to give a simple, purely arithmetic proof of \((1) \).

We define \(p_A(0) = 1 \).

Theorem 1. Let \(A = \{a_1, \ldots, a_k\} \) be a set of \(k \) relatively prime positive integers, that is,

\[
gcd(A) = (a_1, \ldots, a_k) = 1.
\]
Let $p_A(n)$ denote the number of partitions of n into parts belonging to A. Then

$$p_A(n) = \left(\frac{1}{\prod_{a \in A} a} \right) n^{k-1} \frac{n^{k-2}}{(k-1)!} + O(n^{k-2}).$$

Proof. Let $k = |A|$. The proof is by induction on k. If $k = 1$, then $A = \{1\}$ and

$$p_A(n) = 1,$$

since every positive integer has a unique partition into a sum of 1’s.

Let $k \geq 2$, and assume that the theorem holds for $k - 1$. Let

$$d = (a_1, \ldots, a_{k-1}).$$

Then

$$(d, a_k) = 1.$$

For $i = 1, \ldots, k - 1$, we set

$$a_i' = \frac{a_i}{d}.$$

Then

$$A' = \{a_1', \ldots, a_{k-1}'\}$$

is a set of $k - 1$ relatively prime positive integers, that is,

$$\gcd(A') = 1.$$

Since the induction assumption holds for A', we have

$$p_{A'}(n) = \left(\frac{1}{\prod_{i=1}^{k-1} a_i'} \right) n^{k-2} \frac{n^{k-3}}{(k-2)!} + O(n^{k-3})$$

for all nonnegative integers n.

Let $n \geq (d - 1)a_k$. Since $(d, a_k) = 1$, there exists a unique integer u such that

$$0 \leq u \leq d - 1$$

and

$$n \equiv ua_k \pmod{d}.$$

Then

$$m = \frac{n - ua_k}{d}$$

is a nonnegative integer, and

$$m = O(n).$$

If v is any nonnegative integer such that

$$n \equiv va_k \pmod{d},$$

then

$$va_k \equiv ua_k \pmod{d}.$$
and so \(v \equiv u \pmod{d} \), that is, \(v = u + \ell d \) for some nonnegative integer \(\ell \). If
\[
 n - va_k = n - (u + \ell d)a_k \geq 0,
\]
then
\[
0 \leq \ell \leq \left\lfloor \frac{n}{da_k} - \frac{u}{d} \right\rfloor = \left\lfloor \frac{m}{a_k} \right\rfloor = r.
\]
We note that
\[
r = O(n).
\]
Let \(\pi \) be a partition of \(n \) into parts belonging to \(A \). If \(\pi \) contains exactly \(v \) parts equal to \(a_k \), then \(n - va_k \geq 0 \) and \(n - va_k \equiv 0 \pmod{d} \), since \(n - va_k \) is a sum of elements in \(\{a_1, \ldots, a_{k-1}\} \), and each of the elements in this set is divisible by \(d \). Therefore, \(v = u + \ell d \), where \(0 \leq \ell \leq r \). Consequently, we can divide the partitions of \(n \) with parts in \(A \) into \(r + 1 \) classes, where, for each \(\ell = 0, 1, \ldots, r \), a partition belongs to class \(\ell \) if it contains exactly \(u + \ell d \) parts equal to \(a_k \). The number of partitions of \(n \) with exactly \(u + \ell d \) parts equal to \(a_k \) is exactly the number of partitions of \(n - \ell d a_k \) into parts belonging to the set \(\{a_1, \ldots, a_{k-1}\} \), or, equivalently, the number of partitions of
\[
\frac{n - (u + \ell d) a_k}{d}
\]
into parts belonging to \(A' \), which is exactly
\[
p_{A'} \left(\frac{n - (u + \ell d) a_k}{d} \right) = p_{A'} \left(m - \ell a_k \right).
\]
Therefore,
\[
p_{A}(n) = \sum_{\ell=0}^{r} p_{A'}(m - \ell a_k)
\]
\[
= \left(\frac{1}{\prod_{i=1}^{k-1} a_i^i} \right) \sum_{\ell=0}^{r} \left(\frac{(m - \ell a_k)^{k-2}}{(k-2)!} + O(m^{k-3}) \right)
\]
\[
= \left(\frac{d^{k-1}}{\prod_{i=1}^{k-1} a_i} \right) \sum_{\ell=0}^{r} \left(\frac{(m - \ell a_k)^{k-2}}{(k-2)!} + O(n^{k-2}) \right).
\]
To evaluate the inner sum, we note that
\[
\sum_{\ell=0}^{r} \ell^j = \frac{r^{j+1}}{(j+1)} + O(r^j)
\]
and
\[
\sum_{j=0}^{k-2} (-1)^j \binom{k-1}{j+1} = -\sum_{j=1}^{k-1} (-1)^j \binom{k-1}{j} = 1.
\]
Then
\[
\sum_{\ell=0}^{r} \frac{(m - \ell a_k)^{k-2}}{(k-2)!} = \frac{1}{(k-2)!} \sum_{\ell=0}^{r} \sum_{j=0}^{k-2} \binom{k-2}{j} m^{k-2-j} (-\ell a_k)^j \sum_{\ell=0}^{r} \ell^j
\]
\[
= \frac{1}{(k-2)!} \sum_{j=0}^{k-2} \binom{k-2}{j} m^{k-2-j} (-a_k)^j \sum_{\ell=0}^{r} \ell^j
\]
\[
= \frac{1}{(k-2)!} \sum_{j=0}^{k-2} \binom{k-2}{j} m^{k-2-j} (-a_k)^j \left(\frac{r^{j+1}}{(j+1)} + O(r^j) \right)
\]
\[
= \frac{1}{(k-2)!} \sum_{j=0}^{k-2} \binom{k-2}{j} m^{k-2-j} (-a_k)^j \left(\frac{m^{j+1}}{a_k^{j+1}(j+1)} + O(m^j) \right)
\]
\[
= \frac{m^{k-1}}{a_k} \sum_{j=0}^{k-2} \binom{k-2}{j} \frac{(-1)^j}{(k-2)! (j+1)} + O(m^{k-2})
\]
\[
= \frac{m^{k-1}}{a_k} \sum_{j=0}^{k-2} \binom{k-2}{j} \frac{(-1)^j}{(k-2-j)! (j+1)!} + O(m^{k-2})
\]
\[
= \frac{m^{k-1}}{a_k} \sum_{j=0}^{k-2} \binom{k-2}{j} \frac{(-1)^j}{(k-1-(j+1))! (j+1)!} + O(m^{k-2})
\]
\[
= \frac{m^{k-1}}{a_k (k-1)!} \sum_{j=0}^{k-2} (-1)^j \binom{k-1}{j+1} + O(m^{k-2})
\]
\[
= \frac{m^{k-1}}{a_k (k-1)!} + O(m^{k-2}).
\]

Therefore,
\[
p_A(n) = \left(\frac{d^{k-1}}{\prod_{i=1}^{k-1} a_i} \right) \sum_{\ell=0}^{r} \frac{(m - \ell a_k)^{k-2}}{(k-2)!} + O(n^{k-2})
\]
\[
= \left(\frac{d^{k-1}}{\prod_{i=1}^{k-1} a_i} \right) \left(\frac{m^{k-1}}{a_k (k-1)!} + O(n^{k-2}) \right) + O(n^{k-2})
\]
\[
= \left(\frac{d^{k-1}}{\prod_{i=1}^{k-1} a_i} \right) \left(\frac{1}{a_k (k-1)!} \right) \left(\frac{n}{d} - \frac{a_k}{d} \right)^{k-1} + O(n^{k-2})
\]
\[
= \left(\frac{d^{k-1}}{\prod_{i=1}^{k-1} a_i} \right) \left(\frac{1}{a_k (k-1)!} \right) \left(\frac{n}{d} \right)^{k-1} + O(n^{k-2})
\]
\[
= \left(\frac{1}{\prod_{i=1}^{k} a_i} \right) \frac{n^{k-1}}{(k-1)!} + O(n^{k-2}).
\]

This completes the proof.
References

Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468

E-mail address: nathansn@alpha.lehman.cuny.edu

Current address: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

E-mail address: nathansn@ias.edu