On complete graphs with negative r-mean curvature
HTML articles powered by AMS MathViewer
- by Maria Fernanda Elbert
- Proc. Amer. Math. Soc. 128 (2000), 1443-1450
- DOI: https://doi.org/10.1090/S0002-9939-00-05671-9
- Published electronically: February 7, 2000
- PDF | Request permission
Abstract:
We generalize Efimov’s Theorem for graphs in Euclidean space using the scalar curvature, with an additional hypothesis on the second fundamental form.References
- Nelson Dunford, A mean ergodic theorem, Duke Math. J. 5 (1939), 635–646. MR 98
- Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- Shiing-shen Chern, On the curvatures of a piece of hypersurface in euclidean space, Abh. Math. Sem. Univ. Hamburg 29 (1965), 77–91. MR 188949, DOI 10.1007/BF02996311
- S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354. MR 385749, DOI 10.1002/cpa.3160280303
- Takashi Okayasu, $\textrm {O}(2)\times \textrm {O}(2)$-invariant hypersurfaces with constant negative scalar curvature in $E^4$, Proc. Amer. Math. Soc. 107 (1989), no. 4, 1045–1050. MR 990430, DOI 10.1090/S0002-9939-1989-0990430-7
- Robert C. Reilly, On the Hessian of a function and the curvatures of its graph, Michigan Math. J. 20 (1973), 373–383. MR 334045
- Harold Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math. 117 (1993), no. 2, 211–239. MR 1216008
- Isabel Maria da Costa Salavessa, Graphs with parallel mean curvature, Proc. Amer. Math. Soc. 107 (1989), no. 2, 449–458. MR 965247, DOI 10.1090/S0002-9939-1989-0965247-X
- Brian Smyth and Frederico Xavier, Efimov’s theorem in dimension greater than two, Invent. Math. 90 (1987), no. 3, 443–450. MR 914845, DOI 10.1007/BF01389174
Bibliographic Information
- Maria Fernanda Elbert
- Affiliation: Instituto de Matematica, UFRJ, Cx. Postal 68530, 21941-590 Rio de Janeiro, RJ, Brasil
- Address at time of publication: IMPA - Estrada Dona Castorina, 110, 22460-320 - Rio de Janeiro, RJ, Brasil
- Email: elbert@impa.br
- Received by editor(s): June 17, 1998
- Published electronically: February 7, 2000
- Communicated by: Christopher Croke
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 1443-1450
- MSC (2000): Primary 53C42; Secondary 53A10
- DOI: https://doi.org/10.1090/S0002-9939-00-05671-9
- MathSciNet review: 1712913