Generalized Matlis duality

Authors:
Richard G. Belshoff, Edgar E. Enochs and Juan Ramon García Rozas

Journal:
Proc. Amer. Math. Soc. **128** (2000), 1307-1312

MSC (1991):
Primary 13C05; Secondary 13H99

DOI:
https://doi.org/10.1090/S0002-9939-99-05130-8

Published electronically:
October 18, 1999

MathSciNet review:
1641645

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a commutative noetherian ring and let be the minimal injective cogenerator of the category of -modules. A module is said to be reflexive with respect to if the natural evaluation map from to is an isomorphism. We give a classification of modules which are reflexive with respect to . A module is reflexive with respect to if and only if has a finitely generated submodule such that is artinian and is a complete semi-local ring.

**1.**R. Belshoff,*Some Change of Ring Theorems for Matlis Reflexive Modules,*Comm. Algebra**22**(1994), 3545-3552. MR**95h:13010****2.**F.C. Cheng, and M.Y. Wang,*Homological Dimension of G-Matlis dual modules over semilocal rings,*Comm. Algebra**21**(1993), no. 4, 1215-1220. MR**94e:13016****3.**E. Enochs,*Flat covers and flat cotorsion modules,*Proc. Amer. Math. Soc. (2)**92**(1984), 179-184. MR**85j:13016****4.**E. Enochs, J.R. Garcia Rozas, and L. Oyonarte*Finitely generated cotorsion modules,*preprint.**5.**P. Gabriel,*Objets injectifs dans les categories abeliennes,*Seminare Dubriel**12**(1959), no. 17.**6.**P. Jara, and E. Santos,*Matlis reflexive modules on complete rings,*J. Pure Appl. Algebra**106**(1996), no. 1, 77-91. MR**96j:13014****7.**E. Matlis,*Injective Modules over Noetherian Rings,*Pacific J. Math.**8**(1958), 511-528. MR**20:5800****8.**I. Nishitani,*A generalized Matlis duality for certain topological rings,*Comm. Algebra**22**(1994), no. 7, 2669-2676. MR**95d:16058****9.**M.Y. Wang and G.M. Zhang,*Homological properties of generalized Matlis reflexive modules over commutative semilocal rings,*Sichuan Shifan Daxue Xuebao Ziran Kexue Ban**16**(1993), no. 1, 14-19. MR**94k:13014**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
13C05,
13H99

Retrieve articles in all journals with MSC (1991): 13C05, 13H99

Additional Information

**Richard G. Belshoff**

Affiliation:
Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804

Email:
belshoff@math.smsu.edu

**Edgar E. Enochs**

Affiliation:
Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

Email:
enochs@ms.uky.edu

**Juan Ramon García Rozas**

Affiliation:
Department of Algebra and Analysis, University of Almería 04120 Almería, Spain

Email:
jrgrozas@ualm.es

DOI:
https://doi.org/10.1090/S0002-9939-99-05130-8

Keywords:
Matlis,
duality

Received by editor(s):
January 28, 1998

Received by editor(s) in revised form:
July 1, 1998

Published electronically:
October 18, 1999

Communicated by:
Wolmer V. Vasconcelos

Article copyright:
© Copyright 2000
American Mathematical Society