Weak amenability of Segal algebras
HTML articles powered by AMS MathViewer
- by H. G. Dales and S. S. Pandey
- Proc. Amer. Math. Soc. 128 (2000), 1419-1425
- DOI: https://doi.org/10.1090/S0002-9939-99-05139-4
- Published electronically: October 6, 1999
- PDF | Request permission
Abstract:
Let $G$ be a locally compact abelian group, and let $p \in [1,\infty )$. We show that the Segal algebra $S_p(G)$ is always weakly amenable, but that it is amenable only if $G$ is discrete.References
- W. G. Bade, P. C. Curtis Jr., and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 55 (1987), no. 2, 359–377. MR 896225, DOI 10.1093/plms/s3-55_{2}.359
- J. T. Burnham, Closed ideals in subalgebras of Banach algebras. I, Proc. Amer. Math. Soc. 32 (1972), 551–555. MR 295078, DOI 10.1090/S0002-9939-1972-0295078-5
- H. G. Dales, Banach algebras and automatic continuity, Clarendon Press, Oxford, to appear.
- M. Despić and F. Ghahramani, Weak amenability of group algebras of locally compact groups, Canad. Math. Bull. 37 (1994), no. 2, 165–167. MR 1275699, DOI 10.4153/CMB-1994-024-4
- Jośe E. Galé, Weak amenability of Banach algebras generated by some analytic semigroups, Proc. Amer. Math. Soc. 104 (1988), no. 2, 546–550. MR 962826, DOI 10.1090/S0002-9939-1988-0962826-X
- Niels Groenbaek, A characterization of weakly amenable Banach algebras, Studia Math. 94 (1989), no. 2, 149–162. MR 1025743, DOI 10.4064/sm-94-2-149-162
- A. Ya. Helemskii, The homology of Banach and topological algebras, Mathematics and its Applications (Soviet Series), vol. 41, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by Alan West. MR 1093462, DOI 10.1007/978-94-009-2354-6
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Band 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
- Barry Edward Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, No. 127, American Mathematical Society, Providence, R.I., 1972. MR 0374934
- Ron Larsen, Teng-sun Liu, and Ju-kwei Wang, On functions with Fourier transforms in $L_{p}$, Michigan Math. J. 11 (1964), 369–378. MR 170173
- John C. Martin and Leonard Y. H. Yap, The algebra of functions with Fourier transforms in $L^{p}$, Proc. Amer. Math. Soc. 24 (1970), 217–219. MR 247378, DOI 10.1090/S0002-9939-1970-0247378-0
- S. Poornima, Multipliers of Sobolev spaces, J. Functional Analysis 45 (1982), no. 1, 1–28. MR 645643, DOI 10.1016/0022-1236(82)90002-7
- Hans Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. MR 0306811
- Hans Reiter, $L^{1}$-algebras and Segal algebras, Lecture Notes in Mathematics, Vol. 231, Springer-Verlag, Berlin-New York, 1971. MR 0440280, DOI 10.1007/BFb0060759
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Allan M. Sinclair, Continuous semigroups in Banach algebras, London Mathematical Society Lecture Note Series, vol. 63, Cambridge University Press, Cambridge-New York, 1982. MR 664431, DOI 10.1017/CBO9780511662423
- M. C. White, Strong Wedderburn decompositions of Banach algebras containing analytic semigroups, J. London Math. Soc. (2) 49 (1994), no. 2, 331–342. MR 1260116, DOI 10.1112/jlms/49.2.331
Bibliographic Information
- H. G. Dales
- Affiliation: Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, England
- MR Author ID: 54205
- Email: pmt6hgd@leeds.ac.uk
- S. S. Pandey
- Affiliation: Department of Mathematics, R. D. University, Jabalpur, India
- Email: ssp@rdunijb.ren.nic.in
- Received by editor(s): March 10, 1998
- Received by editor(s) in revised form: July 3, 1998
- Published electronically: October 6, 1999
- Additional Notes: The second author acknowledges with thanks the support of the Royal Society-INSA exchange program which enabled him to visit the University of Leeds to work with the first author. He is also thankful to the Department of Pure Mathematics at Leeds for hospitality.
- Communicated by: Christopher D. Sogge
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 1419-1425
- MSC (1991): Primary 46J10
- DOI: https://doi.org/10.1090/S0002-9939-99-05139-4
- MathSciNet review: 1641681