ON THE STABILITY
OF APPROXIMATELY ADDITIVE MAPPINGS

YANG-HI LEE AND KIL-WOUNG JUN
(Communicated by Dale Alspach)

Abstract. In this paper we prove a generalization of the stability of approximately additive mappings in the spirit of Hyers, Ulam and Rassias.

1. Introduction

In 1941 Hyers [3] showed that if $δ > 0$ and $f : E_1 → E_2$, with E_1 and E_2 Banach spaces, such that

$$\|f(x + y) - f(x) - f(y)\| \leq δ, \text{ for all } x, y \in E_1,$$

then there exists a unique additive mapping $T : E_1 → E_2$ such that

$$\|f(x) - T(x)\| \leq δ,$$

for all $x \in E_1$, and if $f(tx)$ is continuous in t for each fixed x, then T is a linear mapping.

Rassias [6] and Gajda [1] gave some generalizations of the Hyers’ result in the following ways: Let $f : E_1 → E_2$ be a mapping such that $f(tx)$ is continuous in t for each fixed x. Assume that there exist $θ ≥ 0$ and $p ≠ 1$ such that

$$\frac{\|f(x + y) - f(x) - f(y)\|}{\|x\|^p + \|y\|^p} ≤ θ, \text{ for all } x, y \in E_1.$$

Then there exists a unique linear mapping $T : E_1 → E_2$ such that

$$\frac{\|T(x) - f(x)\|}{\|x\|^p} ≤ \frac{2θ}{2 - 2^p}, \text{ for all } x \in E_1.$$

However, it was showed that the similar result for the case $p = 1$ does not hold (see [7]). Recently, Gavruta [2] also obtained a further generalization of the Hyers-Rassias theorem: Let G be an abelian group and X a Banach space. Denote by $φ : G × G → [0, ∞)$ a mapping such that

$$φ(x, y) = \sum_{k=0}^{∞} 2^{-k}φ(2^k x, 2^k y) < ∞$$

for all $x, y \in G$. Suppose $f : G → X$ is a mapping satisfying

$$\|f(x + y) - f(x) - f(y)\| ≤ φ(x, y)$$

Received by the editors February 25, 1998 and, in revised form, June 22, 1998.

1991 Mathematics Subject Classification. Primary 47H15.
for all \(x, y \in G\). Then there exists a unique additive mapping \(T : G \to X\) such that

\[
\|f(x) - T(x)\| \leq \frac{1}{2} \tilde{\varphi}(x, x) \quad \text{for all} \quad x \in G.
\]

In this paper we generalize the results of Hyers, Rassias and Găvruta.

2. Main results

Throughout this paper, let \(a\) be a fixed rational number with \(a > 1\). If \(a\) is not an integer, there exist unique nonnegative integers \(b, p\) and \(q\) such that \(a = b + q/p\), \(0 < q/p < 1\) and \((p, q) = 1\). If \(a\) is an integer, we let \(a = b\). We denote by \(G\) a vector space, by \(X\) a Banach space, and by \(\varphi : G \times G \to [0, \infty)\) a mapping such that

\[
\varphi(x, y) = \sum_{k=0}^{\infty} a^{-k} \varphi(a^k x, a^k y) < \infty
\]

for all \(x, y \in G\). In particular, when \(a = 2\), we denote \(\varphi(x, y)\) by \(\varphi_2(x, y)\). We also assume that \(\sum_{n=2}^{\infty} x^n = 0\) if \(n < 2\).

Theorem 2.1. Let \(f : G \to X\) be such that

\[
\|f(x + y) - f(x) - f(y)\| \leq \varphi(x, y), \quad \text{for all} \quad x, y \in G.
\]

Then there exists a unique additive mapping \(T : G \to X\) such that

\[
\|T(x) - f(x)\| \leq a^{-1} \varphi\left(\frac{2}{p} x, bx\right) + a^{-1} \sum_{i=1}^{p} \varphi\left(\frac{1}{p} x, \frac{i-1}{p} x\right)
\]

\[
+ a^{-1} \sum_{i=2}^{q} \varphi\left(\frac{1}{p} x, \frac{i-1}{p} x\right) + a^{-1} \sum_{i=2}^{b} \varphi(x, (i - 1)x),
\]

for all \(x \in G\).

Proof. We first prove the case that \(a\) is not an integer. Putting \(y = ix\) in (2), we have

\[
\|f((i + 1)x) - f(x) - f(ix)\| \leq \varphi(x, ix), \quad \text{for all} \quad x \in G, i \in N.
\]

Thus

\[
\|f((k + 1)x) - (k + 1)f(x)\| \leq \sum_{i=1}^{k} \|f((i + 1)x) - f(x) - f(ix)\|
\]

\[
\leq \sum_{i=2}^{k+1} \varphi(x, (i - 1)x)
\]

for all \(x \in G, k \in N\). From (4) it follows that

\[
\|a^{-1} f(bx) - a^{-1} bf(x)\| \leq \sum_{i=2}^{b} a^{-1} \varphi(x, (i - 1)x).
\]

Replacing \(x\) by \(\frac{2}{p} x\) and \(y\) by \(bx\), (2) gives

\[
\|a^{-1} f(ax) - a^{-1} f\left(\frac{q}{p} x\right) - a^{-1} f(bx)\| \leq a^{-1} \varphi\left(\frac{q}{p} x, bx\right).
\]
Replacing x by $\frac{1}{x}$ and $k+1$ by p, (4) gives

\begin{equation}
\|f(x) - pf\left(\frac{1}{p}x\right)\| \leq \sum_{i=2}^{p} \varphi\left(\frac{1}{p}x, \frac{i-1}{p}x\right).
\end{equation}

Replacing x by $\frac{1}{p}x$ and $k+1$ by q, (4) gives

\begin{equation}
\|f\left(\frac{q}{p}x\right) - qf\left(\frac{1}{p}x\right)\| \leq \sum_{i=2}^{q} \varphi\left(\frac{1}{p}x, \frac{i-1}{p}x\right).
\end{equation}

From (7) and (8), we obtain

\begin{equation}
a^{-1}\left\|\frac{q}{p}f(x) - f\left(\frac{q}{p}x\right)\right\| \leq a^{-1}\sum_{i=2}^{q} \varphi\left(\frac{1}{p}x, \frac{i-1}{p}x\right)
\end{equation}

\begin{equation}
+ a^{-1}\sum_{i=2}^{q} \varphi\left(\frac{1}{p}x, \frac{i-1}{p}x\right).
\end{equation}

From (5), (6) and (9), we get

\begin{equation}
\|a^{-1}f(ax) - f(x)\| \leq \|a^{-1}f(ax) - f\left(\frac{q}{p}x\right) - f(bx)\|
\end{equation}

\begin{equation}
+ a^{-1}\|\frac{q}{p}f(x) - f\left(\frac{q}{p}x\right)\| + a^{-1}\|f(bx) - bf(x)\|
\end{equation}

\begin{equation}
\leq a^{-1}\left[\varphi\left(\frac{q}{p}x, bx\right) + \sum_{i=2}^{q} \varphi\left(\frac{1}{p}x, \frac{i-1}{p}x\right)
\end{equation}

\begin{equation}
+ \sum_{i=2}^{q} \varphi\left(\frac{1}{p}x, \frac{i-1}{p}x\right) + \sum_{i=2}^{b} \varphi\left(x, (i-1)x\right)\right].
\end{equation}

Replacing x by $a^{-1}x$, (10) gives

\begin{equation}
\|a^{-1}f(a^k x) - f(a^k x)\|
\end{equation}

\begin{equation}
\leq a^{-1}\left[\varphi(a^{-1}\frac{q}{p}x, a^{-1}bx) + \sum_{i=2}^{q} \varphi(a^{-1}\frac{1}{p}x, a^{-1}\frac{i-1}{p}x)
\end{equation}

\begin{equation}
+ \sum_{i=2}^{q} \varphi(a^{-1}\frac{1}{p}x, a^{-1}\frac{i-1}{p}x) + \sum_{i=2}^{b} \varphi(a^{-1}x, a^{-1}(i-1)x)\right].
\end{equation}
From (11) we obtain

\[\|a^{-n}f(a^n x) - f(x)\| \leq \sum_{k=1}^{n} a^{-k+1}\|a^{-1}f(a^k x) - f(a^{k-1} x)\| \]

\[\leq \sum_{k=1}^{n} a^{-k}\varphi(a^{k-1}\frac{q}{p} x, a^{k-1} I x) \]

\[+ \frac{q}{p} \sum_{i=2}^{p} \sum_{k=1}^{n} a^{-k}\varphi(a^{k-1}\frac{1}{p} x, a^{k-1} I - \frac{1}{p} x) \]

\[+ \sum_{i=2}^{q} \sum_{k=1}^{n} a^{-k}\varphi(a^{k-1}\frac{1}{p} x, a^{k-1} I - \frac{1}{p} x) \]

\[+ \sum_{i=2}^{b} \sum_{k=1}^{n} a^{-k}\varphi(a^{k-1} x, a^{k-1} (i - 1) x) \]

(12)

for all \(x \in G \).

We claim that the sequence \(\{a^{-n}f(a^n x)\} \) is a Cauchy sequence. Indeed, for \(n > m \), we have

\[\|a^{-n}f(a^n x) - a^{-m}f(a^m x)\| \leq \sum_{k=m+1}^{n} a^{-k+1}\|a^{-1}f(a^k x) - f(a^{k-1} x)\| \]

\[\leq \sum_{k=m+1}^{n} a^{-k}\varphi(a^{k-1}\frac{q}{p} x, a^{k-1} I x) \]

\[+ \frac{q}{p} \sum_{i=2}^{p} \sum_{k=m+1}^{n} a^{-k}\varphi(a^{k-1}\frac{1}{p} x, a^{k-1} I - \frac{1}{p} x) \]

\[+ \sum_{i=2}^{q} \sum_{k=m+1}^{n} a^{-k}\varphi(a^{k-1}\frac{1}{p} x, a^{k-1} I - \frac{1}{p} x) \]

\[+ \sum_{i=2}^{b} \sum_{k=m+1}^{n} a^{-k}\varphi(a^{k-1} x, a^{k-1} (i - 1) x) \]

(13)

for all \(x \in G \). Taking the limit in (13) as \(m \to \infty \) we obtain

\[\lim_{m \to \infty} \|a^{-n}f(a^n x) - a^{-m}f(a^m x)\| = 0. \]

Since \(X \) is a Banach space, the sequence \(\{a^{-n}f(a^n x)\} \) converges for every \(x \in G \). Denote

\[T(x) = \lim_{n \to \infty} \frac{f(a^n x)}{a^n}. \]

From (2) we have

\[\|a^{-n}f(a^n x + a^n y) - a^{-n}f(a^n x) - a^{-n}f(a^n y)\| \]

\[\leq a^{-n}\varphi(a^n x, a^n y) \quad \text{for all} \; x, y \in G. \]

(14)

From (1) it follows that

\[\lim_{n \to \infty} a^{-n}\varphi(a^n x, a^n y) = 0. \]
Then (14) implies
\[||T(x + y) - T(x) - T(y)|| = 0.\]
To prove (3), taking the limit in (12) as \(n \to \infty \), we obtain
\[
\begin{align*}
||T(x) - f(x)|| &\leq a^{-1} \tilde{\varphi}\left(\frac{q}{p} x, bx\right) + \frac{q}{p} \sum_{i=2}^{p} \tilde{\varphi}\left(\frac{1}{p} x, \frac{i-1}{p} x\right) \\
&\quad + a^{-1} \sum_{i=2}^{q} \tilde{\varphi}\left(\frac{1}{p} x, \frac{i-1}{p} x\right) + a^{-1} \sum_{i=2}^{b} \tilde{\varphi}(x, (i-1)x) \quad \text{for all } x \in G.
\end{align*}
\]
It remains to show that \(T \) is uniquely defined. Let \(F : G \to X \) be another additive mapping satisfying (3). Then
\[
||T(x) - F(x)|| = ||a^{-n}T(a^n x) - a^{-n}F(a^n x)||
\leq ||a^{-n}T(a^n x) - a^{-n}f(a^n x)|| + ||a^{-n}f(a^n x) - a^{-n}F(a^n x)||
\leq 2 \left[a^{-n-1} \tilde{\varphi}(a^n \frac{q}{p} x, a^n bx) + a^{-n} \tilde{\varphi}(a^n \frac{1}{p} x, a^n \frac{i-1}{p} x) \right]
\]
\[
+ a^{-n-1} \sum_{i=2}^{q} \tilde{\varphi}(a^n \frac{1}{p} x, a^n \frac{i-1}{p} x) + a^{-n-1} \sum_{i=2}^{b} \tilde{\varphi}(a^n x, a^n (i-1)x) \]
\[
= 2a^{-1} \sum_{j=n}^{\infty} a^{-j} \varphi(a^{j} \frac{q}{p} x, a^{j} bx) + \frac{q}{p} \sum_{i=2}^{p} \sum_{j=n}^{\infty} a^{-j} \varphi(a^{j} \frac{1}{p} x, a^{j} \frac{i-1}{p} x) \\
+ \sum_{i=2}^{\infty} \sum_{j=n}^{\infty} a^{-j} \varphi(a^{j} \frac{1}{p} x, a^{j} \frac{i-1}{p} x) + \sum_{i=2}^{b} \sum_{j=n}^{\infty} a^{-j} \varphi(a^{j} x, a^{j} (i-1)x)
\]
Thus
\[
||T(x) - F(x)|| = ||a^{-n}T(a^n x) - a^{-n}F(a^n x)||
\leq 2a^{-1} \left[\sum_{j=n}^{\infty} a^{-j} \varphi(a^{j} \frac{q}{p} x, a^{j} bx) + \frac{q}{p} \sum_{i=2}^{p} \sum_{j=n}^{\infty} a^{-j} \varphi(a^{j} \frac{1}{p} x, a^{j} \frac{i-1}{p} x) \\
+ \sum_{i=2}^{\infty} \sum_{j=n}^{\infty} a^{-j} \varphi(a^{j} \frac{1}{p} x, a^{j} \frac{i-1}{p} x) + \sum_{i=2}^{b} \sum_{j=n}^{\infty} a^{-j} \varphi(a^{j} x, a^{j} (i-1)x) \right]
\]
for all \(x \in G \). Taking the limit (15) as \(n \to \infty \) we obtain
\[
T(x) = F(x) \quad \text{for all } x \in G.
\]
Now we prove the case: \(a = b \). From (5) we obtain
\[
||a^{-1}f(ax) - f(x)|| \leq \sum_{i=2}^{a} a^{-1} \varphi(x, (i-1)x).
\]
Hence we have
\[
||a^{-n}f(a^n x) - f(x)|| \leq \sum_{i=2}^{a} \sum_{k=1}^{n} a^{-k} \varphi(a^{k-1} x, a^{k-1} (i-1)x)
\]
for all \(x \in G \). Denote

\[T(x) = \lim_{n \to \infty} \frac{f(a^n x)}{a^n}. \]

Taking the limit in (12') as \(n \to \infty \), we obtain

\[\|T(x) - f(x)\| \leq a^{-1} \sum_{i=2}^{n} \phi(x, (i-1)x) \quad \text{for all } x \in G. \]

It is easy to show that \(T \) is uniquely defined.

Lemma 2.2. Let \(T : G \to X \) be an additive mapping and let \(x_0 \in G \). If there are an interval \((c, d)\) and \(y \in G \) such that \(C = \{\|T(ux_0 + y)\| : u \in (c, d)\} \) is bounded, then

\[T(ux_0) = uT(x_0) \quad \text{for all real numbers } u. \]

Proof. Assume that there exists a real number \(r \) such that \(T(rx_0) \neq rT(x_0) \). Let \(m = \|T(rx_0) - rT(x_0)\| \). Let \(\{r_n\} \) be a rational number sequence such that

\[\|(r - r_n)T(x_0)\| \leq m/2 \quad \text{and} \quad \lim_{n \to \infty} r_n = r. \]

Choose a rational number sequence \(\{r'_n\} \) such that \(r'_n(r - r_n) \in (c, d) \) and \(\lim_{n \to \infty} r'_n = \infty \). Since

\[\|T(r'_n(r - r_n)x_0 + y) - r'_n rT(x_0) + r'_n r_n T(x_0) - T(y)\| \\
=\| r'_n T(rx_0) - r'_n rT(x_0)\| \\
= |r'_n| m, \]

we have

\[\|T(r'_n(r - r_n)x_0 + y)\| \geq |r'_n|(m/2) - \|T(y)\| \quad \text{for all } n \in N. \]

This contradicts the fact that \(C \) is bounded.

Remarks. In Theorem 2.1, (a) if there exist an interval \((c, d)\) and \(\varepsilon > 0 \) such that \(\{\|f(ux_0)\| : u \in (c, d)\} \) and \(\{\phi(sx_0, tx_0) : d/(p+\varepsilon) \leq s, t \leq (b-1)d\} \) are bounded for a fixed \(x_0 \), then \(T(rx_0) = rT(x_0) \) for all real numbers \(r \). In fact, choose an interval \((c', d') \subset (c, d) \cap (dp/(p + \varepsilon), d)\). From (3) we obtain \(C = \{\|T(ux_0)\| : u \in (c', d')\} \) is bounded.

(b) If \(G \) is a normed space and \(f(tx) \) is continuous in \(t \) for each fixed \(x \) and \(\phi \) is bounded on \(G \times G \), then \(T \) is linear by (a).

Theorem 2.3. Let \(G \) be a normed space and \(f \) be as in Theorem 2.1. If \(f \) is bounded for some open subset \(A \) of \(G \) and \(\phi \) is bounded on \(G \times G \), then there exists a unique continuous linear mapping \(T : G \to X \) such that

\[\|T(x) - f(x)\| \leq a^{-1} \phi(\frac{a}{p} x, bx) + a^{-1} \sum_{i=2}^{p} \phi(\frac{1}{p} x, \frac{i-1}{p} x) \\
+ a^{-1} \sum_{i=2}^{q} \phi(\frac{1}{p} x, \frac{i-1}{p} x) + a^{-1} \sum_{i=2}^{b} \phi(x, (i-1)x) \quad \text{for all } x \in G. \]

Proof. Let \(T \) be a mapping as in Theorem 2.1. From (4) we obtain that \(T \) is bounded on \(A \). Let \(z \) be an interior point of \(A \). For each fixed \(x \in G \) there exists an interval \((c, d)\) such that \(\{ux + z : u \in (c, d)\} \subset A \). By the preceding remark, \(T \) is linear. Since \(T \) is bounded on open set \(A \), \(T \) is continuous.
Corollary 2.4. Let G and f be as in Theorem 2.3. If f is bounded for some open subset A of G and φ_2 is bounded on $A \times A$, then there exists a unique continuous linear mapping $T : G \to X$ such that

$$
\|T(x) - f(x)\| \leq 2^{-1}\varphi_2(x,x) \quad \text{for all } x \in G.
$$

Proof. By Theorem 2.1, there exists a unique additive mapping $T : G \to X$ such that $\|T(x) - f(x)\| \leq 2^{-1}\varphi_2(x,x)$ for all $x \in A$. We can apply the similar method as in Theorem 2.3. \qed

Theorem 2.5. Let $f : E_1 \to E_2$ be a mapping with E_1 and E_2 Banach spaces. If for each fixed $x, y \in E_1$ there exist real numbers $\theta_{xy}, p_{xy}, s_{xy}$ such that $0 \leq p_{xy} < 1$ and

$$
\|f(tx + ty) - f(tx) - f(ty)\| \leq \theta_{xy}(\|tx\|^p_{xy} + \|ty\|^p_{xy}) \quad \text{for } t > s_{xy},
$$

then there exists a unique additive mapping $T : E_1 \to E_2$ such that

$$
\|T(tx) - f(tx)\| \leq \frac{2\theta_{xx}\|tx\|^p_{xx}}{2 - 2^p_{xx}} \quad \text{for } t > s_{xx}
$$

for all $x \in E_1$. In particular, if for a fixed $x_0 \in E_1$ there exist real numbers M_{x_0}, s_{x_0} such that $\|f(tx_0)\|/t < M_{x_0}$ for $t > s_{x_0}$, then $T(rx_0) = rT(x_0)$ for all real numbers r.

Proof. Let

$$
\varphi(tx, ty) = \|f(tx + ty) - f(tx) - f(ty)\|.
$$

Then $\varphi_2(x, y) < \infty$ for all $x, y \in E_1$ and $2^{-1}\varphi_2(tx, tx) < 2\theta_{xx}\|tx\|^p_{xx}/(2 - 2^p_{xx})$ for $t > s_{xx}$ for each $x \in E_1$. By Theorem 2.1 there exists a unique additive mapping $T : E_1 \to E_2$ such that

$$
\|T(tx) - f(tx)\| \leq \frac{2\theta_{xx}\|tx\|^p_{xx}}{2 - 2^p_{xx}} \quad \text{for } t > s_{xx}
$$

for all $x, y \in E_1$. If for a fixed $x_0 \in E_1$ there exist real numbers M_{x_0}, s_{x_0} with $\|f(tx_0)\|/t < M_{x_0}$ for $t > s_{x_0}$, then

$$
\|T(tx_0)\| \leq \frac{2\theta_{xx_0}\|tx_0\|^p_{xx_0x_0}}{2 - 2^p_{xx_0x_0}} + M_{x_0}t \quad \text{for } t > \max(s_{x_0x_0}, s_{x_0}).
$$

Therefore $\{\|T(ux_0)\| : u \in (\max(s_{x_0x_0}, s_{x_0}), 2\max(s_{x_0x_0}, s_{x_0}))\}$ is bounded. Apply Lemma 2.2. \qed

The following theorem is a generalization of Theorem 1 in [4].

Theorem 2.6. Let a function $\psi : R^+ \to R^+$ satisfy

(i) $\psi(ts) \leq \psi(t)\psi(s)$ for all $t, s \in R^+$ and

(ii) $\lim_{t \to \infty} \psi(t)/t = 0$

and let $f : E_1 \to E_2$ be a mapping with E_1 and E_2 Banach spaces. If for each fixed $x, y \in E_1$, there exists a real number θ_{xy} such that

$$
\|f(tx + ty) - f(tx) - f(ty)\| \leq \theta_{xy}(\|tx\| + \psi(\|ty\|)) \quad \text{for all } t \in R^+,
$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
then there exist a unique additive mapping $T : E_1 \to E_2$ and a rational number $a > 1$ such that

$$
\|f(tx) - T(tx)\| \leq a^{-1}(1 - \frac{\psi(a)}{a}) \left[\theta_{(q/p)x,bx}(\psi(\|\frac{q}{p}tx\|) + \psi(\|btx\|))
+ \frac{q}{p} \sum_{i=2}^{p} \theta_{(1/p)x,(i-1)x/p}(\psi(\|\frac{1}{p}tx\|) + \psi(\|i - 1\|tx\|))
+ \sum_{i=2}^{q} \theta_{(1/p)x,(i-1)x/p}(\psi(\|\frac{1}{p}tx\|) + \psi(\|i - 1\|tx\|))
+ \sum_{k=2}^{b} \theta_{x,(i-1)x}(\psi(\|tx\|) + \psi(\|(i - 1)tx\|)))
\right].
$$

(17)

In particular, if for each fixed $x \in E_1$ there exist positive real numbers c_x, d_x such that $A_x = \{\|f(u)x\| : u \in (c_x,d_x)\}$ is bounded, then T is linear.

Proof. From (ii), there exists a rational number a such that $\psi(a) < a$. Let $\varphi(x,y) = \|f(tx + ty) - f(tx) - f(ty)\|$. From (i) we get

$$
\varphi(tx,ty) = \sum_{n=1}^{\infty} a^{-n} \varphi(a^n tx, a^n ty)
\leq \sum_{n=1}^{\infty} a^{n-1} \theta_{x^p}(\psi(\|a^n tx\|) + \psi(\|a^n ty\|))
\leq \sum_{n=1}^{\infty} (\psi(a)/a)^n \theta_{x^p}(\psi(\|tx\|) + \psi(\|ty\|))
= \theta_{x^p}(\psi(\|tx\|) + \psi(\|ty\|)) \frac{1 - \psi(a)/a}{1 - \psi(a)/a} < \infty
$$

for all $x,y \in E_1$ and $t \in R^+$. By Theorem 2.1 there exists a unique additive mapping $T : E_1 \to E_2$ such that

$$
\|f(tx) - T(tx)\| \leq a^{-1}(1 - \frac{\psi(a)}{a}) \left[\theta_{(q/p)x,bx}(\psi(\|\frac{q}{p}tx\|) + \psi(\|btx\|))
+ \frac{q}{p} \sum_{i=2}^{p} \theta_{(1/p)x,(i-1)x/p}(\psi(\|\frac{1}{p}tx\|) + \psi(\|i - 1\|tx\|))
+ \sum_{i=2}^{q} \theta_{(1/p)x,(i-1)x/p}(\psi(\|\frac{1}{p}tx\|) + \psi(\|i - 1\|tx\|))
+ \sum_{k=2}^{b} \theta_{x,(i-1)x}(\psi(\|tx\|) + \psi(\|(i - 1)tx\|)))
\right].
$$

(17)

for $x \in E_1$ and $t \in R^+$. Since $\lim_{t \to \infty} \psi(t)/t = 0$, there exists a positive number M such that $\psi(t)/t < 1$ for all $t > M$. Choose N such that $c_x N > M$. From (17)
we have
\[\|f(tx) - T(tx)\| \leq a^{-1}\psi(tN)(1 - \frac{\psi(a)}{a})\left[\theta_{(q/p)x,bx}(\psi\left(\|\frac{q}{pN}x\|\right) + \psi\left(\frac{b}{N}\|x\|\right))
+ \frac{q}{p}\sum_{i=2}^{p} \theta_{(1/p)x,(i-1)x/p}(\psi\left(\|\frac{1}{pN}x\|\right) + \psi\left(\frac{i-1}{pN}\|x\|\right))\right]
+ \frac{g}{p}\sum_{i=2}^{p} \theta_{(1/p)x,(i-1)x/p}(\psi\left(\|\frac{1}{pN}x\|\right) + \psi\left(\frac{i-1}{pN}\|x\|\right))\right]
\]
(18)
+ \frac{b}{p}\sum_{i=2}^{p} \theta_{x,(i-1)x}(\psi\left(\|\frac{1}{N}x\|\right) + \psi\left(\frac{i-1}{N}\|x\|\right))\].

Since \(\psi(Nt) < Nt\) for all \(t \in (c_x, d_x)\), the right-hand side of the inequality of (18) is bounded for \(t \in (c_x, d_x)\). From \(A_x = \{\|f(ux)\| : u \in (c_x, d_x)\}\) is bounded, \(C_x = \{\|T(ux)\| : u \in (c_x, d_x)\}\) is bounded. Applying Lemma 2.2, \(T\) is linear. □

REFERENCES

DEPARTMENT OF MATHEMATICS EDUCATION, KONGJU NATIONAL UNIVERSITY OF EDUCATION, KONGJU 314-060, REPUBLIC OF KOREA
E-mail address: lyhmzi@kongjuw2.kongju-e.ac.kr

DEPARTMENT OF MATHEMATICS, CHUNGJU NATIONAL UNIVERSITY, TAEJON 305-764, REPUBLIC OF KOREA
E-mail address: kwjun@math.chungnam.ac.kr

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use