Iwasawa invariants and class numbers of quadratic fields for the prime $3$
HTML articles powered by AMS MathViewer
- by Hisao Taya
- Proc. Amer. Math. Soc. 128 (2000), 1285-1292
- DOI: https://doi.org/10.1090/S0002-9939-99-05177-1
- Published electronically: August 3, 1999
- PDF | Request permission
Abstract:
Let $d$ be a square-free integer with $d \equiv 1 \pmod {3}$ and $d > 0$. Put $k^{+}=\Bbb Q(\sqrt {d})$ and $k^{-}=\Bbb Q(\sqrt {-3d})$. For the cyclotomic $\Bbb Z_3$-extension $k^{+}_\infty$ of $k^{+}$, we denote by $k^{+}_n$ the $n$-th layer of $k^{+}_\infty$ over $k^{+}$. We prove that the $3$-Sylow subgroup of the ideal class group of $k^{+}_n$ is trivial for all integers $n \geq 0$ if and only if the class number of $k^{-}$ is not divisible by the prime $3$. This enables us to show that there exist infinitely many real quadratic fields in which $3$ splits and whose Iwasawa $\lambda _3$-invariant vanishes.References
- Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant $\mu _{p}$ vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no.ย 2, 377โ395. MR 528968, DOI 10.2307/1971116
- Takashi Fukuda, On the vanishing of Iwasawa invariants of certain cyclic extensions of $\mathbf Q$ with prime degree, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no.ย 6, 108โ110. MR 1469684
- Ralph Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), no.ย 1, 263โ284. MR 401702, DOI 10.2307/2373625
- Humio Ichimura, A note on Greenbergโs conjecture and the $abc$ conjecture, Proc. Amer. Math. Soc. 126 (1998), no.ย 5, 1315โ1320. MR 1443156, DOI 10.1090/S0002-9939-98-04196-3
- Humio Ichimura and Hiroki Sumida, On the Iwasawa invariants of certain real abelian fields, Tohoku Math. J. (2) 49 (1997), no.ย 2, 203โ215. MR 1447182, DOI 10.2748/tmj/1178225147
- Cahit Arf, Untersuchungen รผber reinverzweigte Erweiterungen diskret bewerteter perfekter Kรถrper, J. Reine Angew. Math. 181 (1939), 1โ44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Kenkichi Iwasawa, On $\textbf {Z}_{l}$-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246โ326. MR 349627, DOI 10.2307/1970784
- Kenkichi Iwasawa, A note on capitulation problem for number fields. II, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no.ย 6, 183โ186. MR 1011867
- James S. Kraft, Class numbers and Iwasawa invariants of quadratic fields, Proc. Amer. Math. Soc. 124 (1996), no.ย 1, 31โ34. MR 1301510, DOI 10.1090/S0002-9939-96-03085-7
- Jin Nakagawa and Kuniaki Horie, Elliptic curves with no rational points, Proc. Amer. Math. Soc. 104 (1988), no.ย 1, 20โ24. MR 958035, DOI 10.1090/S0002-9939-1988-0958035-0
- Manabu Ozaki, The class group of $\textbf {Z}_p$-extensions over totally real number fields, Tohoku Math. J. (2) 49 (1997), no.ย 3, 431โ435. MR 1464188, DOI 10.2748/tmj/1178225114
- Manabu Ozaki and Hisao Taya, On the Iwasawa $\lambda _2$-invariants of certain families of real quadratic fields, Manuscripta Math. 94 (1997), no.ย 4, 437โ444. MR 1484637, DOI 10.1007/BF02677865
- Hisao Taya, On cyclotomic $\textbf {Z}_p$-extensions of real quadratic fields, Acta Arith. 74 (1996), no.ย 2, 107โ119. MR 1373702, DOI 10.4064/aa-74-2-107-119
- Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674, DOI 10.1007/978-1-4684-0133-2
- Gen Yamamoto, On the vanishing of Iwasawa invariants of certain $(p,p)$-extensions of $\textbf {Q}$, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no.ย 3, 45โ47. MR 1453528
Bibliographic Information
- Hisao Taya
- Email: taya@math.is.tohoku.ac.jp
- Received by editor(s): August 27, 1997
- Received by editor(s) in revised form: June 22, 1998
- Published electronically: August 3, 1999
- Additional Notes: This research was partially supported by the Grant-in-Aid for Encouragement of Young Scientists, The Ministry of Education, Science, Sports and Culture, Japan.
- Communicated by: David E. Rohrlich
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 1285-1292
- MSC (1991): Primary 11R23, 11R11, 11R29
- DOI: https://doi.org/10.1090/S0002-9939-99-05177-1
- MathSciNet review: 1641133
Dedicated: Dedicated to Professor Koji Uchida on his 60th birthday