A bound on the reduction number of a primary ideal
HTML articles powered by AMS MathViewer
- by M. E. Rossi
- Proc. Amer. Math. Soc. 128 (2000), 1325-1332
- DOI: https://doi.org/10.1090/S0002-9939-99-05393-9
- Published electronically: October 5, 1999
- PDF | Request permission
Abstract:
Let $( A,\mathcal {M})$ be a local ring of positive dimension $d$ and let $I$ be an $\mathcal {M}$-primary ideal. We denote the reduction number of $I$ by $r(I)$, which is the smallest integer $r$ such that $I^{r+1}=JI^r$ for some reduction $J$ of $I.$ In this paper we give an upper bound on $r(I)$ in terms of numerical invariants which are related with the Hilbert coefficients of $I$ when $A$ is Cohen-Macaulay. If $d=1$, it is known that $r(I) \le e(I) -1$ where $e(I)$ denotes the multiplicity of $I.$ If $d \le 2,$ in Corollary 1.5 we prove $r(I) \le e_1(I) - e(I) + \lambda (A/I) + 1$ where $e_1(I)$ is the first Hilbert coefficient of $I.$ From this bound several results follow. Theorem 1.3 gives an upper bound on $r(I)$ in a more general setting.References
- Cristina Blancafort, Hilbert functions of graded algebras over Artinian rings, J. Pure Appl. Algebra 125 (1998), no. 1-3, 55–78. MR 1600008, DOI 10.1016/S0022-4049(96)00124-7
- A. Corso, C. Polini, M. Vaz Pinto, Sally Modules and associated graded rings, Communications in Algebra 26 (8) (1998), 2689–2708.
- J. Elias, On the depth of the tangent cone and the growth of the Hilbert function, to appear in Trans. Amer. Math. Soc.
- A. Guerrieri and M. E. Rossi, Hilbert coefficients of Hilbert filtrations, J. Algebra 199 (1998), no. 1, 40–61. MR 1489353, DOI 10.1006/jabr.1997.7194
- Sam Huckaba and Thomas Marley, Hilbert coefficients and the depths of associated graded rings, J. London Math. Soc. (2) 56 (1997), no. 1, 64–76. MR 1462826, DOI 10.1112/S0024610797005206
- Craig Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), no. 2, 293–318. MR 894879, DOI 10.1307/mmj/1029003560
- Shiroh Itoh, Hilbert coefficients of integrally closed ideals, J. Algebra 176 (1995), no. 2, 638–652. MR 1351629, DOI 10.1006/jabr.1995.1264
- D. G. Northcott, A note on the coefficients of the abstract Hilbert function, J. London Math. Soc. 35 (1960), 209–214. MR 110731, DOI 10.1112/jlms/s1-35.2.209
- Akira Ooishi, $\Delta$-genera and sectional genera of commutative rings, Hiroshima Math. J. 17 (1987), no. 2, 361–372. MR 909621
- L. J. Ratliff Jr. and David E. Rush, Two notes on reductions of ideals, Indiana Univ. Math. J. 27 (1978), no. 6, 929–934. MR 506202, DOI 10.1512/iumj.1978.27.27062
- M. E. Rossi, Primary ideals with good associated graded ring, to appear in J. of Pure and Applied Algebra.
- M. E. Rossi and G. Valla, A conjecture of J. Sally, Comm. Algebra 24 (1996), no. 13, 4249–4261. MR 1414582, DOI 10.1080/00927879608825812
- Irena Swanson, A note on analytic spread, Comm. Algebra 22 (1994), no. 2, 407–411. MR 1255875, DOI 10.1080/00927879408824857
- Judith D. Sally, Bounds for numbers of generators of Cohen-Macaulay ideals, Pacific J. Math. 63 (1976), no. 2, 517–520. MR 409453, DOI 10.2140/pjm.1976.63.517
- Judith D. Sally, Cohen-Macaulay local rings of embedding dimension $e+d-2$, J. Algebra 83 (1983), no. 2, 393–408. MR 714252, DOI 10.1016/0021-8693(83)90226-0
- Judith D. Sally, Hilbert coefficients and reduction number $2$, J. Algebraic Geom. 1 (1992), no. 2, 325–333. MR 1144442
- Giuseppe Valla, On form rings which are Cohen-Macaulay, J. Algebra 58 (1979), no. 2, 247–250. MR 540637, DOI 10.1016/0021-8693(79)90159-5
- Paolo Valabrega and Giuseppe Valla, Form rings and regular sequences, Nagoya Math. J. 72 (1978), 93–101. MR 514892, DOI 10.1017/S0027763000018225
- W. Vasconcelos, Cohomological Degrees of graded modules, Six Lectures on Commutative algebra, Progress in Math. 166 , Birkhauser, Boston (1998), 345–392.
- Hsin-Ju Wang, On Cohen-Macaulay local rings with embedding dimension $e+d-2$, J. Algebra 190 (1997), no. 1, 226–240. MR 1442154, DOI 10.1006/jabr.1996.6894
Bibliographic Information
- M. E. Rossi
- Affiliation: Dipartimento di Matematica, Universita’ di Genova, Via Dodecaneso 35, 16146- Genova, Italy
- MR Author ID: 150830
- ORCID: 0000-0001-7039-5296
- Email: rossim@dima.unige.it
- Received by editor(s): July 6, 1998
- Published electronically: October 5, 1999
- Communicated by: Wolmer V. Vasconcelos
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 1325-1332
- MSC (1991): Primary 14M05; Secondary 13H10
- DOI: https://doi.org/10.1090/S0002-9939-99-05393-9
- MathSciNet review: 1670423