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THE SURJECTIVITY OF THE CANONICAL HOMOMORPHISM
FROM SINGULAR HOMOLOGY TO ČECH HOMOLOGY

KATSUYA EDA AND KAZUHIRO KAWAMURA

(Communicated by Ralph Cohen)

Abstract. Let X be a locally n-connected compact metric space. Then,
the canonical homomorphism from the singular homology group Hn+1(X) to

the Čech homology group Ȟn+1(X) is surjective. Consequently, if a compact
metric space X is locally connected, then the canonical homomorphism from
H1(X) to Ȟ1(X) is surjective.

1. Introduction and summary

There exists a natural homomorphism from the singular homology group to the
Čech homology group for any space [8, 7]. It is known that it is not an isomorphism
in general, but is an isomorphism when the space is locally contractible. In the
present paper, we study this homomorphism when the space is locally connected
up to certain dimension. The following is our main result.

Theorem 1.1. Let X be a locally n-connected (LCn for short) compact metric
space. Then, the canonical homomorphism from the singular homology group
Hn+1(X) to the Čech homology group Ȟn+1(X) is surjective.

Corollary 1.2. If a compact metric space X is locally connected, then the canonical
homomorphism ϕ∗ : H1(X)→ Ȟ1(X) is surjective.

We recall that the canonical homomorphism is an isomorphism when X is semi-
n+1-lcs by [8, Theorem 1] and, in particular, when X is LCn+1. The above theorem
holds for the homotopy groups and the Čech homotopy groups if the space X is
the limit of an inverse sequence of polyhedra with weak fibrations as bonding maps
[9, p. 178]. On the other hand, an example of Mardešić [8, p. 162] shows that this
theorem and corollary do not hold for non-metrizable compact Hausdorff spaces.

In the following we review the definition of the above canonical homomorphism
and also its dual for cohomology, which will be used for an application in Section
3. For our purpose, it is convenient to use the Vietoris homology groups, which
are naturally isomorphic to the Čech homology groups [1]. A natural homomor-
phism from the singular homology group to the Vietoris homology group is defined
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fairly directly, and that simplicity is helpful to keep the geometric idea transpar-
ent. The canonical homomorphism of Theorem 1.1 is the composition of the above
homomorphism with the natural isomorphism between the Vietoris and the Čech
homology groups, so, in the sequel, we investigate the canonical homomorphism
from the singular homology group to the Vietoris homology group. First we recall
the definition of the Vietoris homology groups and next the homomorphism above.

For an open cover O of a space X, a subset S of X is said to be O-small, if there
exists an element O ∈ O such that S ⊂ O. Let XO be the simplicial complex whose
n-simplex is an (n+1)-tuple (x0, · · · , xn) such that {x0, · · · , xn} is O-small. The
set of all n-simplexes of XO is denoted by Xn

O.
The n-dimensional chain group Cn(XO) is the free abelian group generated by

Xn
O. The boundary operator ∂ is defined by

∂((x0, · · · , xn+1)) =
n+1∑
i=0

(−1)i(x0, · · · , x̂i, · · · , xn+1),

where (x0, · · · , x̂i, · · · , xn+1) is the n-tuple obtained by deleting xi. Then, Hn(XO)
is defined as the homology group of this chain complex. When an open cover P is
a refinement of another open cover O, we write O ≤ P . Then, Cn(XP) is a sub-
group of Cn(XO) and the inclusion induces a homomorphism hOP∗ : Hn(XP) →
Hn(XO). Now, the n-dimensional Vietoris homology group is the inverse limit
lim←−(Hn(XO), hOP∗ : O ≤ P), and, as was mentioned earlier, the group is natu-
rally isomorphic to the Čech homology group Ȟn(X).

We use standard notations for the singular homology groups. The set of all
continuous maps from a space X to Y is denoted by C(X,Y ). The standard n-
simplex is denoted by ∆n. The vertices of ∆n are denoted by e0, · · · , en. The
simplicial map εi : ∆n−1 → ∆n is defined by εi(ej) = ej for j < i and by εi(ej) =
ej+1 for j ≥ i. The singular chain group, the free abelian group generated by all
singular n-simplexes, is denoted by Sn(X). The boundary operator ∂n+1(= ∂) :
Sn+1(X)→ Sn(X) is defined by ∂(u) =

∑n+1
i=0 u · εi for u ∈ C(∆n+1, X). Since this

operation ∂ is defined as well in the case that u is defined only on ∂∆n+1, by abuse
of notation, we define ∂(u) for u ∈ C(∂∆n+1, X) by the same formula as above.

Let O be an open cover of X. A well-known fact [10, p. 178] shows that there
exists a chain homotopy equivalence tO : {Sn(X)} → {SOn (X)}, where SOn (X) is
the subcomplex of Sn(X) generated by all singular n-simplexes u ∈ C(∆n, X) such
that Imu = u(∆n) are O-small. Also tO is the chain homotopy inverse of the
inclusion SOn (X) ↪→ Sn(X). Hence any singular n-chain is homologous to a chain
of the form

∑m
i=0 λiui with λi = ±1 and uk ∈ C(∆n, X) such that each Im(ui) is

O-small. Define ϕO : SOn (X) → Cn(XO) by: ϕO(u) = (u(e0), · · · , u(en)) for each
singular simplex u of SOn (X). Then, ϕO induces a homomorphism from Hn(X) to
Hn(XO), which is denoted by ϕO∗. Since the equality ϕO∗ = hOP∗ · ϕP∗ holds for
each pair of open covers O and P with O ≤ P , we get the canonical homomorphism
ϕ∗ : Hn(X) → lim←−(Hn(XO), hOP∗ : O ≤ P) ' Ȟn(X). For simplicity, we use the
following notation: [z] denotes the homology class which contains a cycle z, when
the homology group under consideration is clear in the context. When we need to
consider a single cycle z in several different homology classes, we shall note which
homology group is in question.

For use in Section 3, we recall a definition of the Alexander cohomology group.
First let Cn(XO) = Hom(Cn(XO),Z), and let the coboundary map δn : Cn(XO)→
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Cn+1(XO) be defined by δn(h)(u) = h(∂n(u)) for u ∈ Cn+1(XO) and for h ∈
Cn(XO). The cohomology group of this cochain complex is denoted by Hn(XO).
The homomorphism gOP∗ : Hn(XO) → Hn(XP) is induced by the dual homo-
morphism gOP : Cn(XO) → Cn(XP) of the inclusion Cn(XP) ↪→ Cn(XO). The
n-dimensional Alexander cohomology group is the direct limit lim−→(Hn(XO), gOP∗ :
O ≤ P), and, as in the Vietoris homology groups, the group is naturally iso-
morphic to the Čech cohomology group Ȟn(X). Since the singular cohomology
group Hn(X) is well-known, we do not repeat the definition here. The homomor-
phism ϕO : SOn (X) → Cn(XO) induces a homomorphism Sn(X) → Cn(XO) via
tO and consequently we get the dual homomorphism ϕO : Hom(Cn(XO),Z) →
Hom(Sn(X),Z) which commutes the coboundary maps. Thus, ϕO induces a homo-
morphism ϕO∗ : Hn(XO) → Hn(X). Since h∗OP : Hn(XO) → Hn(XP) commutes
with ϕO and ϕP , we get the canonical homomorphism ϕ∗ : Ȟn(X)→ Hn(X).

2. Proof of Theorem 1.1

Throughout the present paper, all open covers of spaces are assumed to be finite.
Since we restrict our attention only to compact Hausdorff spaces, this assumption
loses no generality. The first lemma seems to be known, but we were not able to find
this result in the literature so we present a proof for the sake of completeness. (We
refer the reader to [8] for the homology version of this lemma.) For an open cover P
of a space X and a subset P of X, StP(P ) denotes the set

⋃
{U ∈ P : U ∩ P 6= ∅}.

For a map f : X i
P → C(∆i, X) and each simplex (x0, · · · , xi), we simply write

f(x0, · · · , xi) instead of f((x0, · · · , xi)).

Lemma 2.1. Let X be an LCn compact metric space and O an open cover of X.
Then, there exist a refinement P of O and a map ψi : X i

P → C(∆i, X) for each
0 ≤ i ≤ n with the following properties:

(1) For each P ∈ P , StP(P ) is O-small.
(2) ψ0(x)(e0) = x for each 0-simplex x ∈ X.
(3) For each s ∈ X i

P , Imψi(s) is O-small.
(4) ϕO · ψi is the identity on X i

P .
(5) The equality ψi+1(x0, · · · , xi+1) · εj = ψi(x0, · · · , x̂j , · · · , xi+1) holds for each

(i + 1)-simplex (x0, · · · , xi+1) and for each 0 ≤ j ≤ i+ 1.

Proof. As was mentioned at the beginning of this section, we assume that all covers
are finite. We define a sequence of covers Oi by induction. Let O0 = O. For a given
cover Oi, take a refinement Oi+1 of Oi satisfying the following condition: for any
U ∈ Oi+1, there exists a V ∈ Oi such that any map f ∈ C(∂∆n+1−i, StOi+1(U))
extends to a map f ∈ C(∆n+1−i, V ). The cover P is defined by P = On+1.

Next, we construct ψi also by induction. The map ψ0 is defined by condition (2).
Suppose that ψi : X i

Oi → C(∆i, X) is defined so as to satisfy conditions (2)–(5),
and, in addition, for any (x0, · · · , xi) ∈ X i

P , Im(ψi(x0, · · · , xi)) is On+1−i-small.
Take any (i+ 1)-simplex (x0, · · · , xi+1) ∈ X i+1

P . Since

ψi(x0, · · · , x̂j , · · · , xi+1) · εk−1 = ψi−1(x0, · · · , x̂j , · · · , x̂k, · · · , xi+1)
= ψi(x0, · · · , x̂k, · · · , xi+1) · εj

for 0 ≤j<k≤ i+1, the equations f · εj = ψi(x0, · · · , x̂j , · · · , xi+1) (j ≤ i+ 1) define
a map f ∈ C(∂∆i+1, X). By the induction hypothesis, there are Vj ∈ On+1−i
(0 ≤ j ≤ l + 1) such that Im(ψi(x0, · · · , x̂j , · · · , xi+1)) ⊂ Vj , which imply Im(f) ⊂
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StOn+1−i(V0). Then, there exist a V ∈ On−i and an extension ψi+1(x0, · · · , xi+1) ∈
C(∆i+1, V ) of f. Now, ψi+1 has the required properties.

Notice that any refinement of P can be used to define ψi of the above lemma as
well. Since Cn(XO) is free, the map ψi extends to a homomorphism from Cn(XO) to
Si(X), which is also denoted by ψi. We remember that ψi maps X i

P into C(∆i, X),
which is important in the final step of the proof of Theorem 1.1. For the next
lemma, we introduce an auxiliary notion. A singular n-cycle z ∈ Zn(X) is called
a standard n-cycle, if there exists a continuous map u : ∂∆n+1 → X such that
∂u = z.

Lemma 2.2. Let X be an LCn compact metric space and O an open cover of X.
Take a refinement P of O satisfying the properties of Lemma 2.1. Suppose that a
singular cycle z ∈ Zn+1(X) ∩ SPn+1(X) satisfies the following conditions:

(1) z =
∑m0

j=0 λjψn+1(xj0, · · · , xj n+1) where λj = ±1;
(2) ϕO(z) =

∑m0
j=0 λj(xj0, · · · , xj n+1) ∈ Bn+1(XP).

Then, there exist µk = ±1 and standard cycles uk ∈ SOn+1(X) (0 ≤ k ≤ m0) such
that z =

∑m
k=0 µkuk in Sn+1(X).

Proof. By condition (2), there exist (yk0, · · · , yk n+2) ∈ Xn+2
P and µk = ±1 (0 ≤

k ≤ m) such that ϕO(z) =
∑m1
k=0 µk∂(yk0, · · · , yk n+2). Substituting the equality of

(2) and the definition of ∂(yk0, · · · , yk n+2) for both sides of this equation, we have

m0∑
j=0

λj(xj0, · · · , xj n+1) =
m1∑
k=0

µk

n+2∑
i=0

(−1)i(yk0, · · · , ŷki, · · · , yk n+2).

Applying ψn+1, we have

z =
m1∑
k=0

µk

n+2∑
i=0

(−1)iψn+1(yk0, · · · , ŷki, · · · , yk n+2).

By property (5) of Lemma 2.1 for ψn+1 and ψn, we define vk ∈ C(∂∆n+2, X) by:

vk · εi = ψn+1(yk0, · · · , ŷki, · · · , yk n+2) for each 0 ≤ i ≤ n+ 2.

Now, let uk = ∂vk for k. Then Im(vk) is O-small by property (1) of P in Lemma 2.1
and hence these uk’s are the desired standard cycles.

The next lemma is essentially due to Mardešić [8] where the result is proved
under a weaker assumption lcns rather than LCn.

Lemma 2.3. Let X be an LCn compact metric space and O an open cover of
X. Then, ϕO∗(Hn+1(X)) is equal to the image of the canonical projection hO :
Ȟn+1(X) = lim←−{Hn+1(XO), hOP∗ : O ≤ P} → Hn+1(XO).

Proof. Take a refinement P of O and ψi (0 ≤ i ≤ n) which satisfies the properties
of Lemma 2.1. Let c =

∑m
j=0 λj(xj0, · · · , xj n+1) be a cycle in Cn(XP), where
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λk = ±1. Then,

∂(
m∑
j=0

λjψn+1(xj0, · · · , xj n+1)) =
m∑
j=0

λj

n+1∑
k=0

(−1)kψn+1(xj0, · · · , xj n+1) · εk

=
m∑
j=0

λj

n+1∑
k=0

(−1)kψn(xj0, · · · , x̂jk, · · · , xj n+1)

= 0.

The last equality follows from the equation
m∑
j=0

λj

n+1∑
k=0

(−1)k(xj0, · · · , x̂jk, · · · , xj n+1) = ∂c = 0.

Now, we have that
∑m

j=0 λjψn+1(xj0, · · · , xj n+1) is a cycle. Also notice that c =
ϕO∗(

∑m
j=0 λjψn+1(xj0, · · · , xj n+1)) by Lemma 2.1. These two imply that Im(hO∗)

is contained in ϕO∗(Hn+1(X)). The reverse inclusion follows from the equality:
ϕO∗ = hO∗ · ϕ∗.

The standard n-cell {(x0, · · · , xn−1) : 0 ≤ xi ≤ 1 for each i} is denoted by In.

Lemma 2.4. Let X be a connected, locally connected compact metric space. Then,
there exists a continuous surjection F : In+1 → X which satisfies the following:

(1) F (∂In+1) = {x∗} for some x∗ ∈ X.
(2) F is null homotopic relative to ∂In+1.
(3) For any open set U of X, there exist a point y ∈ U and an open subset O of

In+1 such F (O) = {y}.

Proof. The assumption on X implies that there exists a continuous surjection f :
[0, 1] → X. Let C be the Cantor ternary set {

∑∞
i=0 δi/3

i : δi = 0, 2}. Let g :
[0, 1]→ [0, 1] be a continuous surjection such that g is constant on each component
of [0, 1]\C. The existence of such a function is well known. For an explicit formula,
see [6, pp. 74–76], for example. Let h(x) = f(g(|2x− 1|)) for 0 ≤ x ≤ 1. The map
h : I→ X satisfies the condition of the lemma for n = 0.

For x = (x0, · · · , xn−1) ∈ In, let ρ(x) = max{|2xi − 1| : 0 ≤ i ≤ n − 1} and
F (x) = f(g(ρ(x))). Then, the map F takes the value f ·g(1) on the boundary ∂In+1

and factors through the interval [0, 1]. Properties (1) and (2) follows easily from
these. Further, since [0, 1]\C is dense in [0, 1], we can see that F satisfies condition
(3).

Proof of Theorem 1.1. Since Ȟn+1(X) and Hn+1(X) are finite direct sums of Čech
and singular homology groups of the components of X respectively, we may assume
that X is connected. Applying Lemma 2.1 and the remark after that lemma,
we get a sequence of open covers (Pm : m < ω) such that P0 = {X}, and the
collection {Pm : m < ω} is cofinal in the set of all open covers of X and Pm+1 is a
refinement of Pm satisfying the properties of Lemma 2.1 for Pm. We may assume
that each P ∈ Pm is path-connected and the diameter of each P ∈ Pm is less
than 1/m. Any element of Ȟn+1(X) is given by a sequence (cm : m < ω), where
cm ∈ Hn+1(XPm) (m < ω) and hPmPm+1∗(cm+1) = cm. By Lemma 2.3, choose an
element z0 ∈ Zn+1(X) so that ϕP1∗([z0]) = c1 and let bm = cm−ϕPm∗([z0]). Then,
hPmPm+1∗(bm+1) = bm for each m and b1 = 0.
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Next, we define a map Fm ∈ C(∂∆n+2, X) for each m < ω by induction as
follows. Let F1 ∈ C(∂∆n+2, X) be a null homotopic map which satisfies the condi-
tions of Lemma 2.4. In particular, for any non-empty open set U of X there exist
a point y ∈ U and an open subset O of ∂∆n+2 such that F1(O) = y. Then, we
obtain a countable disjoint collection of open disks {Dk : k < ω} of ∂∆n+2 such
that F1 is constant on each Dk and {F (Dk) : k < ω} is dense in X. We construct
maps Fm ∈ C(∂∆n+2, X) and finite subcollections Um of {Dk : k < ω} so that the
following conditions (?) hold:

(1) ϕPm∗([∂Fm]) = bm,
(2)

⋃
Um ∩

⋃
Un = ∅ for any distinct m and n,

(3) Fi is constant on each D ∈ Um for i < m,

(4) Fm | ∂∆n+2 −
⋃m−1
l=1

⋃
Ul = F1 | ∂∆n+2 −

⋃m−1
l=1

⋃
Ul, and

(5) d(Fm(x), Fm−1(x)) < 1/m.

Suppose that Fi (1 ≤ i < m) satisfy (?) and ϕPi∗([∂Fi]) = bi. Choose am+1 ∈
Zn+1(XPm+1) so that bm+1 − ϕPm+1∗([∂Fm−1]) = [am+1].

Since we have chosen Pm so as to satisfy the conditions of Lemma 2.1 for Pm−1,
there exists an element z ∈ Zn+1(X)∩SPmn+1(X) such that ϕPm(z) = am+1. On the
other hand, in Hn+1(XPm−1) we have

[am+1] = ϕPm−1∗(z) = hPm−1Pm+1∗(bm+1)− ϕPm+1∗([∂Fm−1]) = bm−1 − bm−1 = 0,

and hence am+1 belongs to Bn+1(XPm−1). Since m− 1 ≥ 1, we apply Lemma 2.2
and get µmj = ±1 and umj ∈ C(∂∆n+2, X) such that Im(umj) is Pm−2-small and
z =

∑km
j=0 ∂umj.

Take Pmj ∈ Pm−2 (0 ≤ j ≤ km) so that Im(umj) ⊂ Pmj . For each 0 ≤ j ≤ km,
choose an open disk Umj ∈ {Dk : k < ω} \

⋃m−1
l=0

⋃
Ul so that F1(Umj) ∈ Pmj and

Umj ∩Umj′ = ∅ for j 6= j′, and let Um = {Umj : 0 ≤ j ≤ km}. By condition (4), we
have that Fm−1|Umj = F1|Umj is constant and takes a value in Pmj . Since Pmj is
path-connected, we can choose u′mj ∈ C(∂∆n+2, Pmj) such that u′mj is homotopic
to umj and u′mj takes the constant value F1(Umj) on ∂∆n+2 \ Umj . Define the
map Fm by Fm|Umj = u′mj |Umj for 0 ≤ j ≤ km and Fm | ∂∆n+2 \

⋃
Um =

Fm−1 | ∂∆n+2 \
⋃
Um. Note u′mj and Fm−1 take the same constant value on ∂Umj.

Then, Fm ∈ C(∂∆n+2, X) and

∂Fm − (∂Fm−1 + z) = ∂Fm − (∂Fm−1 +
km∑
j=0

∂umj) ∈ Bn+1(X).

Thus,

ϕPm∗([∂Fm]) = ϕPm∗([∂Fm−1] + [z]) = ϕPm∗([∂Fm−1]) + [am+1] = bm.

Hence, (?) holds for Fi (1 ≤ i ≤ m) and we have finished the induction step m.
Since {Fm : m < ω} forms a Cauchy sequence, it converges uniformly to a

map F∞ ∈ C(∂∆n+2, X). For each point x ∈ ∂∆n+2, there exists P ∈ Pm−1

such that both Fm(x) and F∞(x) belong to P. Take a subdivision of ∂∆n+2 so
that the n-cycles ∂F∞ and ∂Fm are homologous to sums of signed Pm−1-small
singular simplexes. By property (1) of Lemma 2.1, for such a singular simplex
u ∈ C(∆n+1, X) which appears as a term for ∂F∞ and for the corresponding
singular simplex um for ∂Fm, we see that ϕm−2(u) and ϕm−2(um) are contained
in a single simplex of XPm−2 . Thus ϕPm−2∗([∂F∞]) = ϕPm−2∗([∂Fm]) = bm−2 for
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each m and, therefore, ϕPk∗([z0] + [∂F∞]) = ck for each k < ω. This completes the
proof.

Remark 2.5. Corollary 1.2 contrasts with the following result [3]: For a 1-dimen-
sional locally connected compact metric space X, the canonical homomorphism
from the fundamental group to the first Čech homotopy group is injective.

Remark 2.6. A compact Hausdorff space X is the inverse limit of an inverse sys-
tem (Xα, pαβ : α ≤ β, α, β ∈ Λ) of compact polyhedra [9]. Then, Ȟn(X) '
lim←−(Hn(Xα), pαβ∗ : α ≤ β, α, β ∈ Λ) holds. Let pα : X → Xα be the projec-
tion. Then, according to [1] the canonical homomorphism ϕ∗ commutes with each
pα∗ : Hn(X)→ Hn(Xα), that is, ϕ∗(u) is the limit of pα∗(u) for u ∈ Hn(X).

A factor of singular homology HT
n (X) is defined and a canonical surjection

σX : Hn(X) → HT
n (X) is constructed in [4]. Since HT

n (Xj) = Hn(Xj) holds by
[4, Theorem 2.1], ϕ∗ factors through σX and hence there exists a canonical homo-
morphism from HT

n (X) to Ȟn(X). When X is LCn, this canonical homomorphism
from HT

n+1(X) to Ȟn+1(X) is a surjection by Theorem 1.1.

3. Application to cohomology groups

Mardešić [8] proved that for an LCn compact Hausdorff space X , the canonical
homomorphism ϕ∗ : Ȟn+1(X) → Hn+1(X) is an injection. As an application of
Theorem 1.1, here we prove that the injection is extended to an “injection” of the
short exact sequence of the Universal Coefficient Theorem for cohomologies. No
specific reference to open covers is necessary in this section, so we work on the
inverse limit representation of compact metric spaces by compact polyhedra as in
Remark 2.6.

Suppose that X is an LCn compact metric space which is the limit of an inverse
sequence lim←−(Xj , pj j+1 : Xj+1 → Xj) of compact polyhedra. Let pj : X → Xj be
the projection. Applying the Universal Coefficient Theorem to each Hn+1(Xj) and
passing to the direct limit, we have the short exact sequence as follows:

0→ lim−→Ext(Hn(Xj),Z)→ Ȟn+1(X)→ lim−→Hom(Hn+1(Xj),Z)→ 0.

We define homomorphisms λ : lim−→Ext(Hn(Xj),Z) → Ext(Hn(X),Z) and µ :
lim−→Hom(Hn+1(Xj),Z) → Hom(Hn+1(X),Z) as follows: For a homomorphism
f : A → B between groups A and B, Hom(f) : Hom(B,Z) → Hom(A,Z) denotes
the Z-dual homomorphism induced by f. Similarly, Ext(f) : Ext(B,Z)→ Ext(A,Z)
denotes the induced homomorphism by f. The sequence (Hom(pj∗) : j < ω) induces
the limit homomorphism

µ = lim−→Hom(pj∗) : lim−→Hom(Hn+1(Xj),Z)→ Hom(Hn+1(X),Z).

Let p̌j∗ : Ȟn+1(X)→ Hn+1(Xj) be the projection homomorphism. By Remark 2.6
of the previous section, one can see that µ = Hom(ϕ∗) · lim−→Hom(p̌j∗), where ϕ∗ :
Hn+1(X)→ Ȟn+1(X) is the homomorphism of Theorem 1.1.

Similarly, the sequence (Ext(pj∗) : j < ω) induces the limit homomorphism
λ = lim−→Ext(pj∗) : lim−→Ext(Hn(Xj),Z) → Ext(Hn(X),Z). We can now state our
result as follows.

Theorem 3.1. Let X be an LCn compact metric space. Under the above notation,
the homomorphisms λ,ϕ∗ and µ form the commutative diagram below and they are
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all injections.

0 → lim−→Ext(Hn(Xj),Z) → Ȟn+1(X) → lim−→Hom(Hn+1(Xj),Z) → 0yλ yϕ∗ yµ
0 → Ext(Hn(X),Z) → Hn+1(X) → Hom(Hn+1(X),Z) → 0

Proof. The commutativity of the above diagram follows easily from the definition
of those homomorphisms and the naturality of the exact sequences involved. By
Corollary 2 of [8], ϕ∗ is an injection, which implies that λ is an injection as well
(the commutativity of the diagram). It remains to prove the injectivity of the
homomorphism µ. It follows from Theorem 1.1 that Hom(ϕ∗) is an injection. From
the equality µ = Hom(ϕ∗) · lim−→Hom(p̌j∗), it suffices to prove that lim−→Hom(p̌j∗) :
lim−→Hom(Hn+1(Xj ,Z))→ Hom(Hn+1(X),Z) is an injection.

In general pj∗ : Hn+1(Xj+1)→ Hn+1(Xj) need not be surjective. Applying the
proof of [5, Theorem 4], we obtain an inverse sequence (Yj , qjj+1 : Yj+1 → Yj) of
compact polyhedra such that each qj induces an isomorphism of homotopy groups
up to dimension n and a surjection up to dimension n+1, and, further (by taking a
subsequence if necessary), there exists a homotopy commutative diagram as follows:

X1 X2 X3

Y1 Y2 Y3q12 q23 q34

p12 p23 p34

@
@@I

@
@@I

@
@@I�

�
�	

�
�
�	

�
�
�	� � �

� � � · · ·

· · ·

Let Y = lim←−(Yj , qjj+1) and let qj : Y → Yj be the projection to the j-th factor.
Observe that Ȟn+1(Y ) is isomorphic to Ȟn+1(X). As before, let q̌j∗ : Ȟn+1(Y )→
Hn+1(Yj) be the projection homomorphism. By the Whitehead Theorem, qjj+1∗ :
Hn+1(Yj+1) → Hn+1(Yj) is a surjection and thus q̌j∗ : Ȟn+1(Y ) → Hn+1(Yj)
is surjective for each j. Taking the Z-dual and passing to the limit, we see that
lim−→Hom(q̌j∗) : lim−→Hom(Hn+1(Yj),Z)→ Hom(Ȟn+1(X),Z) is an injection. Finally
the commutativity of the above diagram shows that lim−→Hom(p̌j∗) is an injection as
well. This completes the proof.

Notice that Dydak [2] proved that the group lim−→Ext(Hn(Xj),Z) is isomorphic
to the group Tor Ȟn+1(X) which is finite, and lim−→Hom(Hn+1(Xj),Z) is isomorphic
to Ȟn+1(X)/Tor Ȟn+1(X) which is free abelian.
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